Usage of Digital Image Processing Methods in the Problem of Determining the Length of the Rail Joints

  • Anatoly Korobeynikov
  • Vera Tkalich
  • Sergey Aleksanin
  • Vladimir Polyakov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 451)

Abstract

Methods and techniques of digital image processing are commonly used for various problems of defectoscopy. Usage of digital image processing methods for automated determination of length of the rail joint is described. There are many of such methods. Among them are filtering methods, image enhancements methods, deblurring methods, methods or regulation, morphological filtering methods, edge detection methods, image analysis methods. Automated procedure for determination of length of the rail joint has been proposed. Also specific example of determination of length of the rail joint has been adduced.

Keywords

Defectoscopy Rail joint Blur image Image analysis Convolution Deblurring Image enhancement Image processing toolbox Morphological filtering 

References

  1. 1.
    Korobeynikov, A.G., Aleksanin, S.A., Perezyabov, O.A.: Automated image processing using magnetic defectoscopy. ARPN J. Eng. Appl. Sci. 10(17) 7488–7493 (2015). ISSN: 1819-6608Google Scholar
  2. 2.
    Grishencev, A.J., Korobejnikov, A.G.: Metody i modeli cifrovoj obrabotki izo-brazhenij, 190 s. Politehnicheskij universitet, Sankt-Peterburg (2014). ISBN: 978-5-7422-4892-7Google Scholar
  3. 3.
    Vakushinskij, A.B., Goncharskij, A.V.: Nekorrektnye zadachi. Chislennye metody i prilozhenija, 199 s. Izd-vo, MGU, Moscow (1989)Google Scholar
  4. 4.
    Vasilenko, G.I., Taratorin, A.M. Vosstanovlenie izobrazhenij, 304 s. Radio i svjaz’, Moscow (1986)Google Scholar
  5. 5.
    Tihonov, A.N., Goncharskij, A.V, Stepanov, V.V.: Obratnye zadachi obrabotki fo-toizobrazhenij//Nekorrektnye zadachi estestvoznanija, S. 185–195. Izd-vo MGU, Moscow (1987)Google Scholar
  6. 6.
    Turchin, V.F.: Reshenie uravnenija Fredgol’ma I roda v statisticheskom ansamble gladkih funkcij. Zh. vychislit. matem. i fiziki, T. 7. № 6. S. 1270−1284 (1967)Google Scholar
  7. 7.
    Jagola, A.G.. Koshev, N.A.: Vosstanovlenie smazannyh i defokusirovannyh cvetnyh izobrazhenij//Vychislitel’nye metody i programmirovanie, T. 9, S. 207−212 (2008)Google Scholar
  8. 8.
    Gonzales, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 827 pp., 2nd edn. Gatesmark Publishing (2009)Google Scholar
  9. 9.
    CHarl’z Genri EHdvards, Dehvid EH. Penni. Differencial’nye uravneniya i problema sobstvennyh znachenij: modelirovanie i vychislenie s pomoshch’yu Mathematica, Maple i MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling, 3-e izd. M.:«Vil’yams» (2007). ISBN: 978-5-8459-1166-7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anatoly Korobeynikov
    • 1
    • 2
  • Vera Tkalich
    • 1
  • Sergey Aleksanin
    • 1
  • Vladimir Polyakov
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussia
  2. 2.SPbF IZMIRANUniversity EmbSaint PetersburgRussia

Personalised recommendations