The GENI Book pp 589-632 | Cite as

Creating a Worldwide Network for the Global Environment for Network Innovations (GENI) and Related Experimental Environments

  • Joe MambrettiEmail author
  • Jim Chen
  • Fei Yeh
  • Jingguo Ge
  • Junling You
  • Tong Li
  • Cees de Laat
  • Paola Grosso
  • Te-Lung Liu
  • Mon-Yen Luo
  • Aki Nakao
  • Paul Müller
  • Ronald van der Pol
  • Martin Reed
  • Michael Stanton
  • Chu-Sing Yang


Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world.


Software Define Networking Control Framework Multi Protocol Label Switch Information Centric Networking Software Define Networking Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express appreciation for the support of the projects described here from many organizations, including the National Science Foundation, the GENI Program Office (GPO), the Department of Energy’s Office of Energy Science, the StarLight International/National Communications Exchange Facility consortium, the Metropolitan Research and Education Network, and the Open Cloud Consortium. The International Multi-Domain Automatic Network Topology Discovery Project is sponsored by Ministry of Science and Technology, Taiwan, R.O.C. under contract number MOST 103-2221-E-492-030. The University of Amsterdam would like to thank the Dutch National Program COMMIT. This project also would like to acknowledge all participants of TWAREN SDN Testbed, including National Cheng Kung University, National Central University, National Taiwan University of Science and Technology, National Ilan University, National Chiao Tung University, National Kaohsiung University of Applied Sciences, Chunghwa Telecom Laboratories, International Center for Advanced Internet Research, JGN-X, and SURFnet, for their helping of setup, testing, and troubleshooting.


  1. 1.
    Berman, M., Chase, J., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R., Seskar, I.: GENI: a federated testbed for innovative network experiments. Special issue on Future Internet Testbeds. Comput. Netw. 61, 5–23 (2014)CrossRefGoogle Scholar
  2. 2.
    Strijkers, R., Makkes, M.X., de Laat, C., Meijer, R.: Internet factories: creating application-specific networks on-demand. Special issue on Cloud Networking and Communications. Comput. Netw. 68, 187–198 (2014). doi: 10.1016/j.comnet.2014.01.009 CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Mell, P., Grance, T.: Definition of cloud computing. Special Publication 800-145. Recommendations of the National Institute of Standards and Technology (NIST).
  5. 5.
    National Science Board. International Science and Engineering Partnerships: A Priority for U.S. Foreign Policy and Our Nation’s Innovation Enterprise, National Science Foundation (2008)Google Scholar
  6. 6.
    Jofre, J., Velayos, C., Landi, G., Giertych, M., Humed, A., Francis, G., Oton, A.: Federation of the BonFIRE multi-cloud infrastructure with networking facilities. Special issue on Future Internet Testbeds. Comput. Netw. 61, 184–196 (2014)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Suñé, M., Bergesio, L., Woesner, H., Rothe, T., Köpsel, A., Colle, D., Puype, B., Simeonidou, D., Nejabati, R., Channegowda, M., Kind, M., Dietz, T., Autenrieth, A., Kotronis, V., Salvadori, E., Salsano, S., Körner, M., Sharma, S.: Design and implementation of the OFELIA FP7 facility: the European OpenFlow testbed. Special issue on Future Internet Testbeds. Comput. Netw. 61, 132–150 (2014)CrossRefGoogle Scholar
  9. 9.
    McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  10. 10.
    Belter, B., Martinez, J., Aznar, J., Riera, J., Contreras, L., Lewandowska, M., Biancani, M., Buysse, J., Develder, C., Demchenko, Y., Donadio, P., Simeonidou, D., Nejabati, R., Peng, S., Drzewiecki, L., Escalona, E., Espin, J.: The GEYSERS optical testbed: a platform for the integration, validation and demonstration of cloud-based infrastructure services. Special issue on Future Internet Testbeds. Comput. Netw. 61, 197–216 (2014)CrossRefGoogle Scholar
  11. 11.
    Campanella, M., Farina, F.: The FEDERICA infrastructure and experience. Special issue on Future Internet Testbeds. Comput. Netw. 61, 176–183 (2014)CrossRefGoogle Scholar
  12. 12.
    Schwerdel, D., Reuther, B., Zinner, T., Müller, P., Tran-Gia, P.: Future internet research and experimentation: the G-lab approach. Special issue on Future Internet Testbeds. Comput. Netw. 61, 102–117 (2014)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Thorpe, S., Battestilli, L., Karmous-Edwards, G., Hutanu, A., MacLaren, J., Mambretti, J., Moore, J., Sundar, K., Xin, Y., Takefusa, A., Hayashi, M., Hirano, A., Okamoto, S., Kudoh, T., Miyamoto, T., Tsukishima, Y., Otani, T., Nakada, H., Tanaka, H., Taniguchi, A., Sameshima, Y., Jinno, M.: G-lambda and EnLIGHTened: wrapped in middleware co-allocating compute and network resources across Japan and the US. In: Proceedings of the First International Conference on Networks for Grid Applications, Lyon, France, SIGARCH, ACM Special Interest Group on Computer Architecture, Published by Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST), Brussels, Belgium (2007)Google Scholar
  15. 15.
    Kim, D., Kim, J., Wang, G., Park, J.-H., Kim, S.-H.: K-GENI testbed deployment and federated meta operations experiment over GENI and KREONET. Special issue on Future Internet Testbeds. Comput. Netw. 61, 39–50 (2014)CrossRefGoogle Scholar
  16. 16.
    Stanton, M.: RNP experiences and expectations in future internet research and development. In: New Network Architectures. Studies in Computational Intelligence, vol. 297, pp. 153–166. Springer, New York (2010)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    van der Ham, J., Stéger, J., Laki, S., Kryftis, Y., Maglaris, V., de Laat, C.: The NOVI information models. Future Gener. Comput. Syst. Available online 18 December 2013, ISSN 0167-739X. doi: 10.1016/j.future.2013.12.017
  19. 19.
    van der Ham, J.J., Dijkstra, F., Travostino, F., Andree, H.M.A., de Laat, C.T.A.M.: Using RDF to describe networks, iGrid2005 special issue. Future Gener. Comput. Syst. 22(8), 862–867 (2006)CrossRefGoogle Scholar
  20. 20.
    Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu, H., Zhao, Z., de Laat, C.: A semantic-web approach for modeling computing infrastructures. J. Comput. Electr. Eng. 39(8), 2553–2565 (2013). doi: 10.1016/j.compeleceng.2013.08.011 CrossRefGoogle Scholar
  21. 21.
    Baldine, I., Xin, Y., Mandal, A., Heermann, C., Chase, J., Marupadi, V., et al.: Networked cloud orchestration: a GENI perspective. Workshop on Management of Emerging Networks and Services (2010)Google Scholar
  22. 22.
    Global Lambda Integrated Facility (GLIF).
  23. 23.
    Global Ring Network for Advanced Applications Development (GLORIAD).
  24. 24.
    Roberts, G., Kudoh, T., Monga, I., Sobieski, J., MacAuley, J., Guok, C.: NSI Connection Service V2.0, Open Grid Forum, GWD-R-P, NSI-WG (2013)Google Scholar
  25. 25.
  26. 26.
    Mambretti, J., Chen, J., Yeh, F.: International network research testbed facilities based on OpenFlow: architecture, services, technologies, and distributed infrastructure proceedings, In: 18th IEEE International Conference on Networks (ICON), pp. 234–242 (2012)Google Scholar
  27. 27.
    Bavier, A., Yuen, M., Blaine, J., McGeer, R., Young, A., Coady, Y., Matthews, C., Pearson, C., Snoeren, A., Mambretti, J.: TransCloud—Design Considerations for a High-performance Cloud Architecture Across Multiple Administrative Domains. CLOSER, pp. 120–126 (2011)Google Scholar
  28. 28.
  29. 29.
    Schwerdel, D., Hock, D., Günther, D., Reuther, B., Müller, P., and Tran-Gia, P.: ToMaTo—a network experimentation tool. In: 7th International ICST Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom 2011), Shanghai, China, April 2011Google Scholar
  30. 30.
    Schwerdel, D., Reuther, B., Zinner, T., Müller, P., Tran-Gia, P.: Future internet research and experimentation: the G-lab approach. Comput. Netw. 61, 102–117 (2014). doi: 10.1016/j.bjp.2013.12.023 CrossRefGoogle Scholar
  31. 31.
    Mambretti, J., Chen, J., Yeh, F., Liu, T.-L., Luo, M.-Y., Yang, C.-S., van der Pol, R., Boele, S., Dijkstra, F., Barczyk, A., van Malensteinz, G.: Openflow Services For Science: An International Experimental Research Network Demonstrating Multi-Domain Automatic Network Topology Discovery, Direct Dynamic Path Provisioning Using Edge Signaling and Control, Integration with Multipathing Using MPTCP, 2012 SC Companion: High-Performance Computing, Networking, Storage and Analysis (SCC) (2012)Google Scholar
  32. 32.
    van der Pol, R., Boele, S., Dijkstra, F., Barczyk, A., van Malenstein, G., Chen, J.H., Mambretti, J.: Multipathing with MPTCP and OpenFlow, High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, November 2012Google Scholar
  33. 33.
    Huang, W.-Y., Hu, J.-W., Lin, S.-C., Liu, T.-L., Tsai, P.-W., Yang, C.-S., Yeh, F., Hao Chen, J., Mambretti, J.: Design and implementation of an automatic network topology discovery system for the future internet across different domains. In: Proceedings of IEEE 26th International Conference on Advanced Information Networking and Applications Workshops (AINAW'12), Singapore, March 2012Google Scholar
  34. 34.
    Luo, M.-Y., Lin, S.-W., Chen, J.-Y.: From monolithic systems to a federated e-learning cloud system. In: IEEE International Conference on Cloud Engineering, San Francisco, California, 25–28 March 2013Google Scholar
  35. 35.
    Tsai, P.-W., Cheng, P.-W., Luo, M.-Y., Liu, T.-L., Yang, C.-S.: Planning and implantation of NetFPGA platform on network emulation testbed, In: Proc. Asia Pacific Advanced Network, Network Research Workshop, Delhi, India, 22 August 2011Google Scholar
  36. 36.
  37. 37.
    Luo, M.-Y., Chen, J., Mambretti, J., Lin, S.-W., Tsai, P.-W., Yeh, F., Yang, C.-S.: Network virtualization implementation over global research production networks. J. Internet Technol. 14(7), 1061–1072 (2013)Google Scholar
  38. 38.
    Luo, M.-Y., Chen, J.-Y.: Towards network virtualization management for federated cloud systems. In: IEEE 6th International Conference on Cloud Computing, Santa Clara, CA, 27 June–2 July 2013Google Scholar
  39. 39.
    Luo, M.-Y., Chen, J.-Y.: Software defined networking across distributed datacenters over cloud. In: 5th IEEE International Conference on Cloud Computing Technology and Science (IEEE CloudCom), Bristol, UK, 2–5 December 2013Google Scholar
  40. 40.
    Koning, R., Grosso, P., de Laat, C.: Using ontologies for resource description in the CineGrid exchange. Future Gener. Comput. Syst. 27(7), 960–965 (2011)CrossRefGoogle Scholar
  41. 41.
    NOVI—Networking Innovations Over Virtualized Infrastructures.
  42. 42.
    Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)CrossRefGoogle Scholar
  43. 43.
    Reed, M.J.: 2012 IEEE International Conference on Traffic Engineering For Information-Centric Networks, Communications (ICC), pp. 2660–2665, 10–15 June 2012Google Scholar
  44. 44.
    Trossen, D., Parisis, G.: Designing and realizing an information-centric internet. Commun. Mag. IEEE 50(7), 60–67 (2012)CrossRefGoogle Scholar
  45. 45.
  46. 46.
  47. 47.
  48. 48.
    Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: OMF: a control and management framework for networking testbeds. ACM SIGOPS Oper. Syst. Rev. 43(4), 54–59 (2010)CrossRefGoogle Scholar
  49. 49.
    Abelem, A., et al.: FIT@BR—a future internet testbed in Brazil. Proc. Asia-Pacific Adv. Netw. 36, 1–8 (2013)CrossRefGoogle Scholar
  50. 50.
    Mambretti, J., Lemay, M., Campbell, S., Guy, H., Tam, T., Bernier, E., Ho, B., Savoie, M., de Laat, C., van der Pol, R., Chen, J., Yeh, F., Figuerola, S., Minoves, P., Simeonidou, D., Escalona, E., Amaya Gonzalez, N., Jukan, A., Bziuk, W., Kim, D., Cho, K.J., Lee, H.-L., Liu, T.L.: High performance digital media network (HPDMnet): an advanced international research initiative and global experimental testbed. Future Gener. Comput. Syst. 27(7), 893–905 (2011)CrossRefGoogle Scholar
  51. 51.
    Jukan, A., Mambretti, J.: Evolution of optical networking toward rich digital media services. Proc. IEEE 100(4), 855–871 (2012)CrossRefGoogle Scholar
  52. 52.
    Mambretti, J., Chen, J., Yeh, F.: Creating environments for innovation: designing and implementing advanced experimental network research testbeds based on the global lambda integrated facility and the starlight exchange. Special issue on Future Internet Testbeds. Comput. Netw. 61, 118–131 (2014)CrossRefGoogle Scholar
  53. 53.
    Feamster, N., Rexford, J., Shenkerz, S., Levin, D., Clark, R., Bailey, J.: SDX: A Software Defined Internet Exchange, White Paper, University of MarylandGoogle Scholar
  54. 54.
    Mambretti, J., Chen, J., Yeh, F.: Software-defined network exchanges (SDXs): enabling capabilities for distributed clouds with SDN multi-domain and multi-services techniques, accepted. In: Workshop on Future Internet Testbeds and Distributed Clouds (FIDC), Co-located with the International Teletraffic Congress in Karlskrona, Sweden, 9–11 September 2014Google Scholar
  55. 55.
    Mambretti, J., Chen, J., Yeh, F.: Software-Defined Network Exchanges (SDXs) and Infrastructure (SDI): Emerging Innovations in SDN and SDI Interdomain Multi-Layer Services and Capabilities, First International Science and Technology Conference: Modern Networking Technology: SDN and NFV—The Next Generation of Computational Infrastructure, Moscow, Russia, 28–29 October 2014. Published By IEEE, Science and Technology Conference (Modern Networking Technologies) (MoNeTeC), 2014 InternationalGoogle Scholar
  56. 56.
    Mambrretti, J., Chen, J., Yeh, F.: Next generation clouds, the Chameleon cloud testbed, and software defined networking (SDN). In: Proceedings, International Conference on Cloud Computing Research and Innovation (ICCCRI 2015), 26–27 October 2015, Singapore (2015)Google Scholar
  57. 57.
  58. 58.
    Travostino, F., Mambretti, J., Karmous-Edwards, G. (eds.): Grid Networks: Enabling Grids with Advanced Communication Technology. Wiley, New York (2006)Google Scholar
  59. 59.
    Doulamis, T., Mambretti, J., Tomkos, I., Varvarigou, D. (eds.): Networks for grid applications. In: Third International ICST Conference, GridNets 2009, Athens, Greece, 8–9 September 2009. Revised Selected PapersGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joe Mambretti
    • 1
    Email author
  • Jim Chen
    • 1
  • Fei Yeh
    • 1
  • Jingguo Ge
    • 2
  • Junling You
    • 2
  • Tong Li
    • 2
  • Cees de Laat
    • 3
  • Paola Grosso
    • 3
  • Te-Lung Liu
    • 4
  • Mon-Yen Luo
    • 5
  • Aki Nakao
    • 6
  • Paul Müller
    • 7
  • Ronald van der Pol
    • 8
  • Martin Reed
    • 9
  • Michael Stanton
    • 10
  • Chu-Sing Yang
    • 11
  1. 1.International Center for Advanced Internet Research Northwestern UniversityChicagoUSA
  2. 2.China Science and Technology Network, Computer Network Information CenterChinese Academy of SciencesBeijingChina
  3. 3.University of AmsterdamAmsterdamThe Netherlands
  4. 4.National Center for High-Performance ComputingNational Applied LaboratoriesHsinchu CityTaiwan
  5. 5.National Kaohsiung University of Applied SciencesKaohsiungTaiwan
  6. 6.University of TokyoTokyoJapan
  7. 7.Integrated Communication Systems Lab., Department of Computer ScienceUniversity of KaiserslauternKaiserslauternGermany
  8. 8.SURFnetUtrechtThe Netherlands
  9. 9.University of EssexColchesterUK
  10. 10.Brazilian Research and Education Network—RNPRio de JaneiroBrazil
  11. 11.National Cheng-Kung UniversityTainan CityTaiwan

Personalised recommendations