Advertisement

An Analysis of Everyday Life Activities and Their Consequences for Energy Use

  • Jenny Palm
  • Kajsa Ellegård
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter, we discuss the need for deeper knowledge about the relation between people’s daily activities and their electricity use and how to increase our knowledge through time use surveys and the visualization of aggregate activity patterns. To understand people’s energy consumption and how to improve energy efficiency or reduce demand during certain peak hours requires an understanding of households’ daily activity patterns. The activity patterns can be revealed when people keep time diaries, from which we analyze where, when, and for how long specific energy-related activities occur. In this chapter, we discuss how energy consumption varies in the course of the day and differs between people in different age groups. This has implications for how individuals should be approached and indicates that policies and advice should differ when directed to people in different life stages. By utilizing many time diaries from a population we can analyze differences in aggregate activity patterns. In Sweden, women, for example, use more electricity for activities related to cooking and household care than men do, which makes them the most relevant target group when it comes to giving feedback on how much electricity an appliance uses or on alternative ways of doing certain activities. Time diaries and visualization tools can also be useful as a reflective tool for the households when discussing their members’ various daily activities in relation to energy consumption. This can be used by energy advisors when targeting individual energy behavior.

Keywords

Household Member Activity Sequence Electricity Consumption Smart Grid Load Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anable, J., B. Anderson, E. Shove, and J. Torriti. 2014. Categories, Concepts and Units: Representing Energy Demand in and Through Time. Working paper 3. Lancaster University, Lancaster: DEMAND center. Google Scholar
  2. Aune, M. 1998. Nøktern eller nyttende: Energiforbruk og hverdagsliv i norske husholdninger. PhD, Senter for teknologi og samfund. Norges teknisk-naturvidenskapelige universitet, Trondheim, Norway.Google Scholar
  3. Bartiaux, F. 2008. Does environmental information overcome practice compartmentalisation and change consumers’ behaviours? Journal of Cleaner Production 16 (11): 1170–1180. doi: 10.1016/j.jclepro.2007.08.013.CrossRefGoogle Scholar
  4. Bartiaux, F., and L.R. Salmón. 2014. Family dynamics and social practice theories: An investigation of daily practices related to food, mobility, energy consumption, and tourism. Nature and Culture 9 (2): 204–224. doi: 10.3167/nc.2014.090206.CrossRefGoogle Scholar
  5. Ellegård, K. 2006. The power of categorisation in the study of everyday life. Journal of Occupational Science 13 (1): 37–48.CrossRefGoogle Scholar
  6. Ellegård, K., and M. Cooper. 2004. Complexity in daily life—A 3D-visualization showing activity patterns in their contexts. Electronic International Journal of Time Use Research 1 (1): 37–59.Google Scholar
  7. Ellegård, K., and K. Nordell. 1997. Att byta vanmakt mot egenmakt: [självreflektion och förändringsarbete i rehabiliteringsprocesser]: [metodbok]. Stockholm: Johansson & Skyttmo.Google Scholar
  8. Ellegård, K., and J. Palm. 2011. Visualizing energy consumption activities as a tool for making everyday life more sustainable. Applied Energy 88 (5): 1920–1926. doi: 10.1016/j.apenergy.2010.11.019.CrossRefGoogle Scholar
  9. Ellegård, K., and J. Palm. 2015. Who is behaving? Consequences for energy policy of concept confusion. Energies 8 (8): 7618.CrossRefGoogle Scholar
  10. Ellegård, K., and K. Vrotsou. 2006. Capturing patterns of everyday life: Presentation of the visualization method VISUAL-TimePAcTS. In International Association for Time-Use Research Conference, Copenhagen, Denmark. Danish National Institute of Social Research.Google Scholar
  11. Ellegård, K., T. Hägerstrand, and B. Lenntorp. 1977. Activity organization and the generation of daily travel: Two future alternatives. Economic Geography: 126–152.Google Scholar
  12. Eurostat. 2009. Harmonised European Time Use Surveys 2008 Guidelines. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  13. Garabuau-Moussaoui, I. 2011. Energy-related logics of action throughout the ages in France: Historical milestones, stages of life and intergenerational transmissions. Energy Efficiency 4 (4): 493–509. doi: 10.1007/s12053-011-9124-8.CrossRefGoogle Scholar
  14. Gram-Hanssen, K. 2010. Standby consumption in households analyzed with a practice theory approach. Journal of Industrial Ecology 14 (1): 150–165. doi: 10.1111/j.1530-9290.2009.00194.x.CrossRefGoogle Scholar
  15. Gyberg, P., and J. Palm. 2009. Influencing households’ energy behaviour-how is this done and on what premises? Energy Policy 37 (7): 2807–2813. doi: 10.1016/j.enpol.2009.03.043.CrossRefGoogle Scholar
  16. Hägerstrand, T. 1970. What about people in regional science? Papers in Regional Science 24 (1): 7–24.CrossRefGoogle Scholar
  17. Hägerstrand, T. 1985. Time-geography: Focus on the corporeality of man, society, and environment. In The Science and Praxis of Complexity, ed. S. Aida, 193–216. Tokyo: The United Nations University.Google Scholar
  18. Hägerstrand, T., and B. Lenntorp. 1993. Region och miljö–sammanfattning av ett projekt om ekologiska perspektiv på den rumsliga närings-och bosättningsstrukturen. Eng Region and environment–a summary of a project about ecological perspectives on the spatial structure industry and settlements) NordREFO 5: 229–237.Google Scholar
  19. Hägerstrand, T., K. Ellegård, U. Svedin, and B. Lenntorp. 2009. Tillvaroväven. Stockholm: Forskningsrådet Formas.Google Scholar
  20. Harvey, A.S. 1993. Guidelines for time use data collection. Social Indicators Research 30 (2–3): 197–228. doi: 10.1007/BF01078728.CrossRefGoogle Scholar
  21. Hellgren, M. 2015. Energy Use as a Consequence of Everyday Life. Linköping: Linköping University.Google Scholar
  22. Isaksson, C., and K. Ellegård. 2015. Dividing or sharing? A time-geographical examination of eating, labour, and energy consumption in Sweden. Energy Research and Social Science 10: 180–191. doi: 10.1016/j.erss.2015.06.014.CrossRefGoogle Scholar
  23. Lenntorp, B. 1977. Paths in space-time environments: A time-geographic study of movement possibilities of individuals. Environment and Planning A 9 (8): 961–972.CrossRefGoogle Scholar
  24. Lindén, A.-L. 2011. Vardagens aktörer och deras hushåll. In Sammanvävt. Det goda livet i vardagsforskningen. En vänbok till Kajsa Ellegård, ed. J. Palm, and E. Wihlborg, 28–39. Linköping, Sweden: Linköping University.Google Scholar
  25. Lunde, M., I. Røpke, and E. Heiskanen. 2015. Smart grid: Hope or hype? Energy Efficiency. doi: 10.1007/s12053-015-9385-8.Google Scholar
  26. Lutzenhiser, L. 1992. A cultural model of household energy consumption. Energy 17 (1): 47–60. doi: 10.1016/0360-5442(92)90032-U.CrossRefGoogle Scholar
  27. Mårtensson, S. 1974. Drag i hushållens levnadsvillkor i Ortsbundna levnadsvillkor. In Bilagedel till Orter i regional samverkan, vol. SOU 1974:2. ed. 1974:2 S, Appendix 2. Bilagedel.Google Scholar
  28. Minnen, J., I. Glorieux, T.P. Van Tienoven, S. Daniels, D. Weenas, J. Deyaert, S. Van Den Bogaert, and S. Rymenants. 2014. Modular online time use survey (MOTUS)-translating an existing method in the 21st century. Electronic International Journal of Time Use Research 11 (1): 73–93. doi: 10.13085/eIJTUR.11.1.73-93.CrossRefGoogle Scholar
  29. Nyborg, S. 2015. Smart Homes in Transition: Investigating the Role of Households in the Development of Smart Grids in Denmark. PhD, Aalborg University, Denmark.Google Scholar
  30. Oikonomou, V., F. Becchis, L. Steg, and D. Russolillo. 2009. Energy saving and energy efficiency concepts for policy making. Energy Policy 37 (11): 4787–4796. doi: 10.1016/j.enpol.2009.06.035 CrossRefGoogle Scholar
  31. Orban, K. 2013. The process of change in patterns of daily occupations among parents of children with obesity: Time use, family characteristics and factors related to change. Diss., Lund University, Lund.Google Scholar
  32. Palm, J. 2010. The public-private divide in household behavior: How far into home can energy guidance reach? Energy Policy 38 (6): 2858–2864. doi: 10.1016/j.enpol.2010.01.018.CrossRefGoogle Scholar
  33. Palm, J., and K. Ellegård. 2011. Visualizing energy consumption activities as a tool for developing effective policy. International Journal of Consumer Studies 35 (2): 171–179. doi: 10.1111/j.1470-6431.2010.00974.x.CrossRefGoogle Scholar
  34. Pantzar, M., and E. Shove. 2010. Temporal rhythms as outcomes of social practices: A speculative discussion. Ethnologia Europaea 40 (1): 19–29.Google Scholar
  35. Reckwitz, A. 2002. Toward a theory of social practices a development in culturalist theorizing. European Journal of Social Theory 5 (2): 243–263.CrossRefGoogle Scholar
  36. Røpke, I., and T.H. Christensen. 2012. Energy impacts of ICT—Insights from an everyday life perspective. Telematics and Informatics 29 (4): 348–361. doi: 10.1016/j.tele.2012.02.001.
  37. Shaw, S.L., H. Yu, and L.S. Bombom. 2008. A space-time GIS approach to exploring large individual-based spatiotemporal datasets. Transactions in GIS 12 (4): 425–441. doi: 10.1111/j.1467-9671.2008.01114.x.
  38. Shoval, N., M.P. Kwan, K.H. Reinau, and H. Harder. 2014. The shoemaker’s son always goes barefoot: Implementations of GPS and other tracking technologies for geographic research. Geoforum 51: 1–5. doi: 10.1016/j.geoforum.2013.09.016.
  39. Shove, E. 2003. Comfort, cleanliness and convenience: The social organization of normality. Berg Oxford.Google Scholar
  40. Shove, E., F. Trentmann, and R. Wilk. 2009. Time, consumption and everyday life: Practice, materiality and culture. Berg.Google Scholar
  41. Shove, E., and N. Spurling. 2013. Sustainable practices: Social theory and climate change, 1–14. doi:10.4324/9780203071052Google Scholar
  42. Silm, S., and R. Ahas. 2014. The temporal variation of ethnic segregation in a city: Evidence from a mobile phone use dataset. Social Science Research 47: 30–43. doi: 10.1016/j.ssresearch.2014.03.011.
  43. Skolverket. 2013. Lärarnas yrkesvardag: En nationell kartläggning av grundskollärares tidsanvändning. Stockholm: Skolverket.Google Scholar
  44. Stephenson, J., B. Barton, G. Carrington, D. Gnoth, R. Lawson, and P. Thorsnes. 2010. Energy cultures: A framework for understanding energy behaviours. Energy Policy 38 (10): 6120–6129. doi: 10.1016/j.enpol.2010.05.069.
  45. Strengers, Y. 2012. Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector. Energy Policy 44: 226–234. doi: 10.1016/j.enpol.2012.01.046.
  46. Szalai, A. 1972. The use of time: Daily activities of urban and suburban populations in twelve countries. Publications of the European Coordination Centre for Research and Documentation in the Social Sciences. The Hague: Mouton.Google Scholar
  47. Vrotsou, K. 2010. Everyday mining: Exploring sequences in event-based data. Department of Science and Technology, Linköping University, Norrköping.Google Scholar
  48. Vrotsou, K., M. Bergqvist, M. Cooper, and K. Ellegård. 2014. PODD: A portable diary data collection system. In: Proceedings of the 2014 international working conference on advanced visual interfaces, 2014. ACM: 381–382.Google Scholar
  49. Walker, G. 2014. The dynamics of energy demand: Change, rhythm and synchronicity. Energy Research and Social Science 1: 49–55. doi: 10.1016/j.erss.2014.03.012.
  50. Warde, A. 2014. After taste: Culture, consumption and theories of practice. Journal of Consumer Culture 14 (3): 279–303. doi: 10.1177/1469540514547828.
  51. Welch, D., and A. Warde. 2014. Theories of practice and sustainable consumption. In Handbook of Research on Sustainable Consumption, 84–100. doi: 10.4337/9781783471270.00013.
  52. Wilhite, H. 2005. Why energy needs anthropology. Anthropology Today 21 (3): 1–2.Google Scholar
  53. Wilhite, H., E. Shove, L. Lutzenhiser, and W. Kempton. 2000. The legacy of twenty years of energy demand management: We know more about individual behaviour but next to nothing about demand. In Society, behaviour, and climate change mitigation, 109–126. Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Thematic Studies, Technology and Social ChangeLinköping UniversityLinköpingSweden

Personalised recommendations