Properties of the Dahl Model Applied to Modelling of Static Friction in Closed-Loop Kinematic Chains

Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 569)

Abstract

High parametric sensitivity of the Dahl model is observed when rigid body approach is used to analyse the static friction in close-loop mechanisms. The origins of sensitivity problems are investigated. The possibility of diminishing sensitivity problems by taking flexibility into account is discussed.

Keywords

Static friction Dahl model Redundant constraints Solution uniqueness 

References

  1. Armstrong-Hélouvry, B., Dupont, P., & Canudas de Wit, C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 30(7), 1083–1138.CrossRefMATHGoogle Scholar
  2. Canudas de Wit, C., Olsson, H., Astrom, K. J., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on Automation and Control, 40(3), 419–425.Google Scholar
  3. Dahl, P. R. (1976). Solid friction damping in mechanical vibrations. AIAA Journal, 14(12), 1675–1682.Google Scholar
  4. Do, N. B., Ferri, A. A., & Bauchau, O. A. (2007). Efficient simulation of a dynamic system with LuGre friction. Journal of Computational and Nonlinear Dynamics, 2(4), 281–289.Google Scholar
  5. Frączek, J., & Wojtyra, M. (2011). On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mechanism and Machine Theory, 46(3), 312–334.CrossRefMATHGoogle Scholar
  6. Hadji, A., & Mureithi, N. (2014). Nonlinear normal modes and the Dahl friction model parameter identification. In ASME 2014 Pressure Vessels and Piping Conference Volume 4: Fluid-Structure Interaction, V004T04A064 (pp. 1–10).Google Scholar
  7. Haug, E. J., Wu, S. C., & Yang, S. M. (1986). Dynamics of mechanical systems with Coulomb friction, stiction, impact, and constraints addition-deletion. Mechanism and Machine Theory, 21(5), 401–425.Google Scholar
  8. Hensen, R. H. A., van de Molengraft, M. J. G., & Steinbuch, M. (2002). Frequency domain identification of dynamic friction model parameters. IEEE Transactions on Control Systems Technology, 10(2), 191–196.CrossRefGoogle Scholar
  9. Pennestrì, E., Valentini, P P., & Vita, L. (2007). Multibody dynamics simulation of planar linkages with Dahl friction. Multibody System Dynamics, 17(4), 321–347.Google Scholar
  10. Swevers, J., Al-Bender, F., Ganesman, C. G., & Prajogo, T. (2000). An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control 45(4), 675–686.Google Scholar
  11. Wojtyra, M., & Frączek, J. (2012). Joint reactions in rigid or flexible body mechanisms with redundant constraints. Bulletin of the Polish Academy of Sciences—Technical Sciences, 60(3), 617–626.CrossRefGoogle Scholar
  12. Wojtyra, M., & Frączek, J. (2013). Comparison of selected methods of handling redundant constraints in multibody systems simulations. Journal of Computational and Nonlinear Dynamics, 8(2), 021007 (1–9).Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2016

Authors and Affiliations

  1. 1.Institute of Aeronautics and Applied Mechanics, Warsaw University of TechnologyWarszawaPoland

Personalised recommendations