Nutrition in Inflammatory Bowel Disease

  • Alan L. BuchmanEmail author


It is estimated that as many as 75 % of hospitalized patients with Crohn’s disease are malnourished [1]. The prevalence of malnutrition is significant even for patients considered to be in clinical remission. Bin et al. observed decreased handgrip strength of 73 % of subjects who had been in remission at least 3 months [2]. Similar observations were made by Valentini et al. despite the presence of normal body mass index (BMI) and serum albumin concentration [3]. In general, the likelihood of nutritional deficiencies is greater in patients with Crohn’s disease than in those with ulcerative colitis. Reduced intake of food because of abdominal cramping, nausea, and nutrient loss in diarrhea are prominent causes of weight loss in patients with IBD. Intestinal malabsorption also contributes to malnutrition in patients with active IBD, primarily those with Crohn’s disease involving the small intestine in whom entero-enteric fistulas that bypass large segments of the proximal intestine may also result in substantial nutrient malabsorption. Extensive mucosal disease, bacterial overgrowth proximal to strictures, and surgical resection all contribute to malabsorption and subsequent weight loss. Increased energy expenditure, as seen with fever, abscess or sepsis, or systemic inflammation, can also result in weight loss. Nutrient deficiency can result in altered cellular immunity with increased risk of infection, delayed wound healing, and in children, growth retardation. Therefore, it is important to identify those patients that are at potential risk of malnutrition. Medical and surgical management plans should then include prevention of, and correction of, nutritional deficits.


Ulcerative Colitis Nutritional Support Short Bowel Syndrome Lactose Intolerance Serum Albumin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Seidman EG. Nutritional management of inflammatory bowel disease. Gastroenterol Clin N Am. 1989;18:129–55.Google Scholar
  2. 2.
    Bin CM, Flores C, Alvares-da-Silva MR, Francesconi CF. Comparison between handgrip strength, subjective global assessment, anthropometry, and biochemical markers in assessing nutritional status of patients with Crohn’s disease in clinical remission. Dig Dis Sci. 2010;55:137–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Valentini L, Schaper L, Buning C, Hengstermann S, Koernicke T, Tillinger W, et al. Malnutrition and impaired muscle strength in patients with Crohn’s disease and ulcerative colitis in remission. Nutrition. 2008;24:694–702.PubMedCrossRefGoogle Scholar
  4. 4.
    Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11:8–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Franklin JL, Rosenberg IH. Impaired folic acid absorption in inflammatory bowel disease: effects of salicylazosulfapyridine. Gastroenterology. 1973;64:517–25.PubMedGoogle Scholar
  6. 6.
    Behrend C, Jeppesen PB, Mortensen PB. Vitamin B-12 absorption after ileorectal anastomosis for Crohn’s disease: effect of ileal resection and time span after surgery. Eur J Gastroenterol Hepatol. 1995;7:397–400.PubMedGoogle Scholar
  7. 7.
    Battat R, Kopylov U, Szilagyi A, Saxena A, Rosenblatt DS, Warner M, et al. Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis. 2014;20:1120–8.PubMedGoogle Scholar
  8. 8.
    Ham M, Longhi MS, Lahiff C, Cheifetz A, Robson S, Moss AC. Vitamin D levels in adults with Crohn’s disease are responsive to activity and treatment. Inflamm Bowel Dis. 2014;20:856–60.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jørgensen SP, Agnholt J, Glerup H, Lyhne S, Villadsen GE, Hvas CL, et al. Clinical trial: vitamin D3 treatment in Crohn’s disease - a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther. 2010;32(3):377–83.Google Scholar
  10. 10.
    Kumari M, Khazai NB, Ziegler TR, Nanes MS, Abrams SA, Tangpricha V. Vitamin D-mediated calcium absorption in patients with clinically stable Crohn’s disease: a pilot study. Mol Nutr Food Res. 2010;54(8):1085–91.Google Scholar
  11. 11.
    Farraye FA, Nimitphong H, Stucchi A, Dendrinos K, Boulanger AB, Vijjeswarapu A, et al. Use of a novel vitamin D bioavailability test demonstrates that vitamin D absorption is decreased in patients with quiescent Crohn’s disease. Inflamm Bowel Dis. 2011;17:2116–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Bours PH, Wielders JP, Vermeijden JR, van de Wiel A. Seasonal variation of serum 25-hydroxyvitamin D levels in adults patients with inflammatory bowel disease. Osteroporos Int. 2011;22:2857–67.CrossRefGoogle Scholar
  13. 13.
    Lagishetty Y, Misharin AV, Liu NQ, et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology. 2010;151:2423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Froicu M, Weaver V, Wynn TA, et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol. 2003;17:2386–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Cantorna MT, Munsick C, Berniss C, Mahon RD. 1,25-dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130:2648–52.PubMedGoogle Scholar
  16. 16.
    Froicu M, Cantorna MT. Vitamin D and vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 2007;8:5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Choi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protect mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143:1679–86.CrossRefGoogle Scholar
  18. 18.
    Blanck S, Aberra F. Vitamin D deficiency is associated with ulcerative colitis disease activity. Dig Dis Sci. 2013;58:1698–702.PubMedCrossRefGoogle Scholar
  19. 19.
    Vogelsang H, Ferenci P, Resch H, Kiss A, Gangl A. Prevention of bone mineral loss in patients with Crohn’s disease by long term oral vitamin D supplementation. Eur J Gstroenterol Hepatol. 1995;7:609–14.Google Scholar
  20. 20.
    Bousvaros A, Zurakowski D, Duggan C, Law T, Rifai N, Goldberg NE, et al. Vitamins A and E serum levels in children and young adults with inflammatory bowel disease: effect of disease activity. J Pediatr Gastroenterol Nutr. 1998;26:129–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Alkhouri RH, Hashmi H, Baker RD, et al. Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2013;56:89–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Nowak JK, Grzybowska-Chlebowczyk U, Landowski P, Szaflarska-Poplawska A, Klincewicz B. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci Rep. 2014;4:4768.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nakajima S, Iijima H, Egawa S, Shinzaki S, Kondo J, Inoue T, et al. Association of vitamin K deficiency with bone metabolism and clinical disease activity in inflammatory bowel disease. Nutrition. 2011;27:1023–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Kuwabara A, Tanaka K, Tsugawa N, Nakase H, Tsuji H, Shide K, et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos Int. 2009;20:935–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Valberg LS, Flanagan PR, Kertesz A, Bondy DC. Zinc absorption in inflammatory bowel disease. Dig Dis Sci. 1986;31:724–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee G, Buchman AL. DNA-driven nutritional therapy of inflammatory bowel disease. Nutrition. 2009;25:885–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Stover PJ. Influence of human genetic variation on nutritional requirements. Am J Clin Nutr. 2006;83:436S–42.PubMedGoogle Scholar
  28. 28.
    Subbiah MT. Understanding the nutrigenomic definitions and concepts at the food-genome junction. OMICS. 2008;12:229–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Hart AR, Luben R, Olsen A, Tjonneland A, Linseisen J, Nagel G, et al. Diet in the aetiology of ulcerative colitis: a European prospective cohort study. Digestion. 2008;77:57–64.PubMedCrossRefGoogle Scholar
  30. 30.
    IBD in EPIC Study Investigators, Tjonneland A, Overvad K, Bergmann MM, Nagel G, Linseisen J, et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case–control study within a European prospective cohort study. Gut. 2009;58:1606–11.CrossRefGoogle Scholar
  31. 31.
    Karmiris K, Koutroubakis IE, Kouroumalis EA. The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:847–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Steed H, Walsh S, Reynolds N. A brief report of the epidemiology of obesity in the inflammatory bowel disease population of Tayside, Scotland. Obes Facts. 2009;2:370–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Blain A, Cattan S, Beaugerie L, et al. Crohn’s disease clinical course and severity in obese patients. Clin Nutr. 2002;21:51–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Chan SS, Luben R, Olsen A, Tjonneland A, Kaaks R, Teucher B, et al. Body mass index and the risk for Crohn’s disease and ulcerative colitis: data from a European Prospective Cohort Study (the IBD in EPIC Study). Am J Gastroenterol. 2013;108:575–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Jarnerot G, Jarnmark I, Nilsson K. Consumption of refined sugar by patients with Crohn’s disease, ulcerative colitis, or irritable bowel syndrome. Scand J Gastroenterol. 1983;18:999–1102.PubMedCrossRefGoogle Scholar
  36. 36.
    Riordan AM, Ruxton CH, Hunter JO. A review of associations between Crohn’s disease and consumption of sugars. Eur J Clin Nutr. 1998;52:2229–38.CrossRefGoogle Scholar
  37. 37.
    Jones VA, Dickinson RJ, Workman E, Wilson AJ, Freeman AH, Hunter JO. Crohn’s disease: maintenance of remission by diet. Lancet. 1985;2:177–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Riordan AM, Hunter JO, Cowan RE, Crampton JR, Davidson AR, Dickinson RJ, et al. Treatment of active Crohn’s disease by exclusion diet. East Angelica multi-centre controlled diet. Lancet. 1993;342:1131–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Sigall-Boneh R, Pfeffer-Gik T, Segal I, Zangen T, Boaz M, Levine A. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 2014;20:1353–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Andresen AFR. Gastrointestinal manifestations of food allergy. Med J Res (Suppl). 1925;122:271–5.Google Scholar
  41. 41.
    Andresen AFR. Ulcerative colitis—an allergic phenomenon. Am J Dig Dis. 1942;9:91–8.CrossRefGoogle Scholar
  42. 42.
    Truelove SC. Ulcerative colitis provoked by milk. Br Med J. 1961;1:154–60.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wright R, Truelove SC. A controlled therapeutic trial of various diets in ulcerative colitis. Br Med J. 1965;2:138–41.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jowett SL, Seal CJ, Pearce MS, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut. 2004;53:1479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Florin THJ, Neale G, Gibson GR, et al. Metabolism of dietary sulfate: absorption and excretion in humans. Gut. 1991;32:766–73.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Di Buono M, Wykes LJ, Ball RO, Pencharz PB. Total sulfur amino acid requirement in young men as determined by indicator amino acid oxidation with l-[1-13C]phenylalanine. Am J Clin Nutr. 2001;74:756–60.PubMedGoogle Scholar
  48. 48.
    Allen HE, Halley-Henderson MA, Hass CN. Chemical composition of bottled mineral water. Arch Environ Health. 1989;44:102–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Ingenbleek Y. The nutritional relationship linking sulfur to nitrogen in living organisms. J Nutr. 2006;136:1641S–51.PubMedGoogle Scholar
  50. 50.
    Gibson GR, Cummings JH, MacFarlane GT. Growth and activities sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol. 1991;86:103–12.CrossRefGoogle Scholar
  51. 51.
    Ohkusa T. Production of experimental ulcerative in hamsters by dextran sulfate sodium and change in intestinal microflora. Jpn J Gastroenterol. 1985;82:1337–47.Google Scholar
  52. 52.
    Ishioka T, Kuwabara N, Oohashi Y, Wakabayashi K. Induction of colorectal tumors in rats by sulfated polysaccharides. CRC Crit Rev Toxicol. 1986;17:215–44.CrossRefGoogle Scholar
  53. 53.
    Roediger WE, Duncan A, Kapaniris O, Millard S. Reducing sulfur compounds of the colon impairs colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104:802–9.PubMedCrossRefGoogle Scholar
  54. 54.
    MacFarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 1992;72:57–64.PubMedGoogle Scholar
  55. 55.
    Roediger WE, Lawson MJ, Kwok V, Grant AK, Pannall PR. Colonic bicarbonate output as a test of disease activity in ulcerative colitis. J Clin Pathol. 1984;37:704–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Magee EA, Richardson CJ, Hughes R, Cummings JH. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000;72:1488–94.PubMedGoogle Scholar
  57. 57.
    Pitcher MCL, Beatty ER, Gibson GR, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46:64–72.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulphide and methanethiol in the cecal mucosa. J Clin Invest. 1999;104:1107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. Oxidation of hydrogen sulphide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol. 2001;62:255–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Roediger WEW, Duncan A. 5-ASA decreases colonic sulphide formation: implications for ulcerative colitis. Med Sci Res. 1996;24:27–9.Google Scholar
  61. 61.
    Edmond LM, Hopkins MJ, Magee EA, Cummings JH. The effect of 5-aminosalicylic acid-containing drugs on sulfide production by sulfate-reducing and amino acid-fermenting bacteria. Inflamm Bowel Dis. 2003;9:10–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Ditscheid B, Fünfstück R, Busch M, Schubert R, Gerth J, Jahreis G. Effect of l-methionine supplementation on plasma homocysteine concentrations and other free amino acids: a placebo-controlled, double-blind cross-over study. Eur J Clin Nutr. 2005;59:768–75.PubMedCrossRefGoogle Scholar
  63. 63.
    Verhoef P, van Vliet T, Olthof MR, Katan MB. A high-protein diet increases postprandial but not fasting total homocysteine concentrations: a dietary controlled crossover trial in healthy volunteers. Am J Clin Nutr. 2005;82:553–8.PubMedGoogle Scholar
  64. 64.
    Danese S, Sgambato A, Papa A, Scaldaferri F, Pola R, Sans M, et al. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease. Am J Gastroenterol. 2005;100:886–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Morgenstern I, Raijmakers MT, Peters WH, Hoensch H, Kirch W. Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Dig Dis Sci. 2003;48:2083–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Koga T, Claycombe K, Meydani M. Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells. Athersclerosis. 2002;161:365–74.CrossRefGoogle Scholar
  67. 67.
    Romagnuolo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M. Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in a cross-sectional study. Am J Gastroenterol. 2001;96:2143–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Magee EA, Edmond LM, Tasker SM, Kong SC, Curno R, Cummings JH. Associations between diet and disease activity in ulcerative colitis patients using a novel method of data analysis. Nutr J. 2005;4:7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Roediger WEW. Decreased sulphur amino acid intake in ulcerative colitis (letter). Lancet. 1998;351:1555.PubMedCrossRefGoogle Scholar
  70. 70.
    Fernández-Bañares F, Hinojosa J, Sánchez-Lombraña JL, Navarro E, Martínez-Salmerón JF, García-Pugés A, et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Am J Gastroenterol. 1999;94:427–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Suarez FL, Savaiano DA, Levitt MD. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. N Engl J Med. 1995;333:1–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of enteric coated fish oil preparations on relapses in Crohn’s disease. N Engl J Med. 1996;334:1557–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Lorenz-Meyer H, Bauer P, Nicolay C, Schulz B, Purrmann J, Fleig WE, et al. Omega 3 fatty acids and low carbohydrate diet for maintenance of remission in Crohn’s disease: a randomized controlled multicenter trial. Scand J Gastroenterol. 1996;31:778–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Feagan BG, Sandborn WJ, Mittmann U, Bar-Meir S, D’Haens G, Bradette M, et al. Omega-3 free fatty acids for the maintenance of remission in Crohn’s disease: the EPIC randomized controlled trials. JAMA. 2008;299:1690–7.Google Scholar
  75. 75.
    Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1B production of diets enriched in n-3 fatty acids from vegetable oil or fish. Am J Clin Nutr. 1996;63:116–22.PubMedGoogle Scholar
  76. 76.
    Akobeng AK, Miller V, Stanton J, Elbadri AM, Thomas AG. Double-blind randomized controlled trial of glutamine-enriched polymeric diet in the treatment of active Crohn’s disease. J Pediatr Gastroentrol Nutr. 2000;30:78–84.CrossRefGoogle Scholar
  77. 77.
    Cordum NR, Schloerb P, Sutton D, et al. Oral glutamine supplementation in patients with Crohn’s disease with or without glucocorticoid treatment. Gastroenterology. 1996;10:A888.Google Scholar
  78. 78.
    Zoli G, Care M, Flaco F, et al. Effect of oral glutamine on intestinal permeability and nutritional status in Crohn’s disease. Gut. 1995;37:A13.CrossRefGoogle Scholar
  79. 79.
    Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P. Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn’s disease. JPEN J Parenter Enteral Nutr. 1999;23:7–11.CrossRefGoogle Scholar
  80. 80.
    Shinozaki M, Saito H, Muto T. Excess glutamine exacerbates trinitrobenzenesulfonic acid-induced colitis in rats. Dis Colon Rectum. 1997;40:S59–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Lashner BA, Evans AA, Hanauer SB. Preoperative total parenteral nutrition for bowel resection in Crohn’s disease. Dig Dis Sci. 1989;34:741–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Salinas H, Dursun A, Konstantinidis I, Nguyen D, Shellito P, Hodin R, et al. Does preoperative total parenteral nutrition in patients with ulcerative colitis produce better outcomes? Int J Colorectal Dis. 2012;27:1479–83.PubMedCrossRefGoogle Scholar
  83. 83.
    Watanabe K, Sasaki I, Fukushima K, Futami K, Ikeuchi H, Sugita A, et al. Long-term incidence and characteristics of intestinal failure in Crohn’s disease: a multicenter study. J Gastroenterol. 2014;49:231–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Sedman PC, MacFie J, Palmer MD, Mitchell CJ, Sagar PM. Preoperative total parenteral nutrition is not associated with mucosal atrophy or bacterial translocation in humans. Br J Surg. 1995;82:1663–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Ostro MJ, Greenberg GR, Jeejeebhoy KN. Total parenteral nutrition and complete bowel rest in the management of Crohn’s disease. JPEN J Parenter Enteral Nutr. 1985;9:280–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Reilly J, Ryan JA, Strole W, Fischer JE. Hyperalimentation in inflammatory bowel disease. Am J Surg. 1976;131:192–200.PubMedCrossRefGoogle Scholar
  87. 87.
    Mullen JL, Hargrove WC, Dudrick SJ, Fitts Jr WT, Rosato EF. Ten years experience with intravenous hyperalimentation and inflammatory bowel disease. Ann Surg. 1978;187:523–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Greenberg GR, Fleming CR, Jeejeebhoy KN. Controlled trial of bowel rest and nutritional support in the management of Crohn’s disease. Gut. 1988;29:1309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lochs H, Meryn S, Marosi L, Ferenci P, Hörtnagl H. Has total bowel rest have a beneficial effect in the treatment of Crohn’s disease. Clin Nutr. 1983;2:61–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Greenberg GR. Nutritional management of inflammatory bowel disease. Semin Gastrointest Dis. 1993;4:69–86.Google Scholar
  91. 91.
    Dickinson RJ, Ashton MG, Axon AT, Smith RC, Yeung CK, Hill GL. Controlled trial of intravenous hyperalimentation and bowel rest as an adjunct to routine therapy of acute colitis. Gastroenterology. 1980;79:1199–204.PubMedGoogle Scholar
  92. 92.
    McIntyre PB, Powell-Tuck J, Wood SR. Controlled trial of bowel rest in the treatment of severe acute colitis. Gut. 1986;27:481–5.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sitzmann JV, Converse RL, Bayless TM. Favorable response to parenteral nutrition and medical therapy in Crohn’s colitis. Gastroenterology. 1990;99:1647–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Afzal NA, Davies S, Paintin M, Arnaud-Battandier F, Walker-Smith JA, Murch S, et al. Colonic Crohn’s disease in children does not respond well to treatment with enteral nutrition if the ileum is not involved. Dig Dis Sci. 2005;50:1471–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Afonso JJ, Rombeau JL. Nutritional care for patients with Crohn’s disease. Hepatogastroenterology. 1990;37:32–41.PubMedGoogle Scholar
  96. 96.
    O’Morain C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial. Br Med J (Clin Res Ed). 1984;288:1859–62.CrossRefGoogle Scholar
  97. 97.
    Jones VA. Comparison of total parenteral nutrition and elemental diet in induction of remission of Crohn’s disease. Dig Dis Sci. 1987;32:100–7.CrossRefGoogle Scholar
  98. 98.
    González-Huix F, de León R, Fernández-Bañares F, Esteve M, Cabré E, Acero D, et al. Polymeric enteral diets as primary treatment of active Crohn’s disease: a prospective steroid controlled trial. Gut. 1993;34:778–82.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rigaud D, Cosnes J, Le Quintrec Y, René E, Gendre JP, Mignon M. Controlled trial comparing two types of enteral nutrition in treatment of active Crohn’s disease: elemental vs polymeric diet. Gut. 1991;32:1492–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Miura S, Tsuzuki Y, Hokari R, Ishii H. Modulation of intestinal immune system by dietary fat intake: relevance to Crohn’s disease. J Gastroenterol Hepatol. 1998;13:1183–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Zachos M, Tondeur M, Griffiths AM. Enteral nutritional therapy for the induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2007: CD000542.Google Scholar
  102. 102.
    Shiga H, Kajiura T, Shinozaki J, Takagi S, Kinouchi Y, Takahashi S, et al. Changes of faecal microbiota in patients with Crohn’s disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis. 2012;44:736–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm Bowel Dis. 2014;20:861–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Leiper K, Woolner J, Mullan MM, Parker T, van der Vliet M, Fear S, et al. A randomized controlled trial of high versus low long chain triglyceride whole protein feed in active Crohn’s disease. Gut. 2001;49:790–4.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Akobeng AK, Thomas AG. Enteral nutrition for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev. 2007: CD005984.Google Scholar
  106. 106.
    Yamamoto T, Nakahigashi M, Umegae S, Matsumoto K. Enteral nutrition for the maintenance of remission in Crohn’s disease: a systematic review. Eur J Gastroenterol Hepatol. 2010;22:1–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of Illinois at ChicagoGlencoeUSA

Personalised recommendations