Lensing by Clusters and Voids in Modified Lensing Potentials

  • Alexandre BarreiraEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we focus on the lensing signal associated with galaxy clusters and cosmic voids in modified gravity theories that modify directly the lensing potential. This is a topic that has not been extensively investigated in the literature.


Galaxy Cluster Modify Gravity Force Profile Nonlocal Model Redshift Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barreira A, Li B, Jennings E, Merten J, King L, Baugh C, Pascoli S (2015) Galaxy cluster lensing masses in modified lensing potentials. ArXiv e-prints arXiv:1505.03468
  2. 2.
    Barreira A, Cautun M, Li B, Baugh C, Pascoli S (2015) Weak lensing by voids in modified lensing potentials. ArXiv e-prints arXiv:1505.05809
  3. 3.
    Sotiriou TP, Faraoni V (2010) f(R) Theories of gravity. Rev Mod Phys 82:451–497. arXiv:0805.1726
  4. 4.
    Dvali GR, Gabadadze G, Porrati M (2000) 4-D gravity on a brane in 5-D Minkowski space. Phys Lett B485:208–214. arXiv:hep-th/0005016
  5. 5.
    Gabadadze G (2009) General relativity with an auxiliary dimension. Phys Lett B681:89–95. arXiv:0908.1112
  6. 6.
    de Rham C (2010) Massive gravity from Dirichlet boundary conditions. Phys Lett B688:137–141. arXiv:0910.5474
  7. 7.
    de Rham C, Gabadadze G, Tolley AJ (2011) Resummation of massive gravity. Phys Rev Lett 106:231101. arXiv:1011.1232
  8. 8.
    de Rham C, Gabadadze G (2010) Selftuned massive spin-2. Phys Lett B693:334–338. arXiv:1006.4367
  9. 9.
    de Rham C, Gabadadze G (2010) Generalization of the Fierz-Pauli action. Phys Rev D82:044020. arXiv:1007.0443
  10. 10.
    de Rham C, Gabadadze G, Heisenberg L, Pirtskhalava D (2011) Cosmic acceleration and the helicity-0 graviton. Phys Rev D83:103516. arXiv:1010.1780
  11. 11.
    Hassan SF, Rosen RA (2012) Bimetric gravity from ghost-free massive gravity. JHEP 1202:126. arXiv:1109.3515
  12. 12.
    Brax P, Valageas P (2014) K-mouflage cosmology: the background evolution. Phys Rev D90(2):023507. arXiv:1403.5420
  13. 13.
    Brax P, Valageas P (2014) K-mouflage cosmology: formation of large-scale structures. arXiv:1403:5424
  14. 14.
    Barreira A, Brax P, Clesse S, Li B, Valageas P (2014) Linear perturbations in K-mouflage cosmologies with massive neutrinos. arXiv:1411:5965
  15. 15.
    Babichev E, Deffayet C, Ziour R (2009) K-mouflage gravity. Int J Mod Phys D18: 2147–2154. arXiv:0905.2943
  16. 16.
    Horndeski GW (1974) Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10:363–384MathSciNetCrossRefGoogle Scholar
  17. 17.
    Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. Astrophys J 490:493–508. arXiv: astro-ph/9611107
  18. 18.
    Postman M et al (2012) The cluster lensing and supernova survey with hubble: an overview. APJS 199:25. arXiv:1106.3328
  19. 19.
    Merten J, Meneghetti M, Postman M, Umetsu K, Zitrin A et al (2014) CLASH: the concentration-mass relation of galaxy clusters. arXiv:1404.1376
  20. 20.
    Umetsu K, Medezinski E, Nonino M, Merten J, Postman M et al (2014) CLASH: weak-lensing shear-and-magnification analysis of 20 galaxy clusters. Astrophys J 795(2):163. arXiv:1404.1375
  21. 21.
    Platen E, van de Weygaert R, Jones BJT (2007) A cosmic watershed: the WVF void detection technique. Mon Not R Astron Soc 380:551–570. arXiv:0706.2788
  22. 22.
    Umetsu K (2010) Cluster weak gravitational lensing. ArXiv e-prints arXiv:1002:3952
  23. 23.
    Bartelmann M, Schneider P (2001) Weak gravitational lensing. Phys Rep 340:291–472. arXiv:astro-ph/9912508
  24. 24.
    Bartelmann M (2010) TOPICAL REVIEW gravitational lensing. Class Quantum Gravity 27(23):233001. arXiv:1010.3829
  25. 25.
    Wright CO, Brainerd TG (1999) Gravitational lensing by NFW halos. ArXiv Astrophysics e-prints arXiv:astro-ph/9908213
  26. 26.
    Kitching TD, Rhodes J, Heymans C, Massey R, Liu Q, Cobzarenco M, Cragin BL, Hassaine A, Kirkby D, Lok EJ, Margala D, Moser J, O’Leary M, Pires AM, Yurgenson S (2012) Image analysis for cosmology: shape measurement challenge review AMP results from the mapping dark matter challenge. ArXiv e-prints arXiv:1204.4096
  27. 27.
    Massey R, Hoekstra H, Kitching T, Rhodes J, Cropper M, Amiaux J, Harvey D, Mellier Y, Meneghetti M, Miller L, Paulin-Henriksson S, Pires S, Scaramella R, Schrabback T (2013) Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). MNRAS 429:661–678. arXiv:1210.7690
  28. 28.
    Bartelmann M (1996) Arcs from a universal dark matter halo profile. Astron Astrophys 313:697–702. arXiv:astro-ph/9602053
  29. 29.
    Merten J, Cacciato M, Meneghetti M, Mignone C, Bartelmann M (2009) Combining weak and strong cluster lensing: applications to simulations and MS 2137. Astron Astrophys 500:681. arXiv:0806.1967
  30. 30.
    Merten J, Coe D, Dupke R, Massey R, Zitrin A, Cypriano ES, Okabe N, Frye B, Braglia FG, Jiménez-Teja Y, Benítez N, Broadhurst T, Rhodes J, Meneghetti M, Moustakas LA, Sodré L Jr, Krick J, Bregman JN (2011) Creation of cosmic structure in the complex galaxy cluster merger Abell 2744. MNRAS 417:333–347. arXiv:1103.2772
  31. 31.
    Kneib JP, Ellis RS, Smail I, Couch WJ, Sharples RM (1996) Hubble space telescope observations of the lensing cluster Abell 2218. Astrophys J 471:643. arXiv:astro-ph/9511015
  32. 32.
    Broadhurst Thomas J et al (2005) Strong lensing analysis of A1689 from deep advanced camera images. Astrophys J 621:53–88. arXiv:astro-ph/0409132
  33. 33.
    Smith Graham P, Kneib Jean-Paul, Smail Ian, Mazzotta Pasquale, Ebeling Harald et al (2005) A Hubble Space Telescope lensing survey of x-ray luminous galaxy clusters: 4. mass, structure and thermodynamics of cluster cores at z = 0.2. Mon Not R Astron Soc 359:417–446. arXiv:astro-ph/0403588
  34. 34.
    Halkola A, Seitz S, Pannella M (2006) Parametric strong gravitational lensing analysis of Abell 1689. Mon Not R Astron Soc 372:1425–1462. arXiv:astro-ph/0605470
  35. 35.
    Jullo E, Kneib J-P, Limousin M, Eliasdottir A, Marshall P et al (2007) A Bayesian approach to strong lensing modelling of galaxy clusters. New J Phys 9:447. arXiv:0706.0048
  36. 36.
    Zitrin A, Broadhurst T, Umetsu K, Coe D, Benítez N, Ascaso B, Bradley L, Ford H, Jee J, Medezinski E, Rephaeli Y, Zheng W (2009) New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. MNRAS 396:1985–2002. arXiv:0902.3971
  37. 37.
    Oguri M (2010) The mass distribution of SDSS J1004+4112 revisited. PASJ 62:1017. arXiv:1005.3103
  38. 38.
    Newman AB, Treu T, Ellis RS, Sand DJ, Nipoti C, Richard J, Jullo E (2013) The density profiles of massive, relaxed galaxy clusters. I. the total density over three decades in radius. APJ 765:24. arXiv:1209.1391
  39. 39.
    Jullo E, Pires S, Jauzac M, Kneib J-P (2014) Weak lensing galaxy cluster field reconstruction. Mon Not R Astron Soc 437:3969. arXiv:1309.5718
  40. 40.
    Johnson TL, Sharon K, Bayliss MB, Gladders MD, Coe D et al (2014) Lens models and magnification maps of the six Hubble Frontier Fields clusters. Astrophys J 797(1):48. arXiv:1405.0222
  41. 41.
    Monna A, Seitz S, Greisel N, Eichner T, Drory N et al (2014) CLASH: z 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431. Mon Not R Astron Soc 438:1417. arXiv:1308.6280
  42. 42.
    Umetsu K, Broadhurst T, Zitrin A, Medezinski E, Coe D, Postman M (2011) A precise cluster mass profile averaged from the highest-quality lensing data. APJ 738:41. arXiv:1105.0444
  43. 43.
    Oguri M, Bayliss MB, Dahle H, Sharon K, Gladders MD, Natarajan P, Hennawi JF, Koester BP (2012) Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey. MNRAS 420:3213–3239. arXiv:1109.2594
  44. 44.
    Jauzac M, Clment B, Limousin M, Richard J, Jullo E et al (2014) Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using 200 multiple images. Mon Not R Astron Soc 443(2):1549–1554. arXiv:1405.3582
  45. 45.
    Jauzac M, Jullo E, Eckert D, Ebeling H, Richard J et al (2015) Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.12403. Mon Not R Astron Soc 446(4):4132–4147. arXiv:1406.3011
  46. 46.
    Jauzac M, Richard J, Jullo E, Clment B, Limousin M et al (2014) Hubble Frontier Fields: a high-precision strong-lensing mass model of the massive galaxy cluster Abell 2744 using 150 multiple images. arXiv:1409.8663
  47. 47.
    Umetsu K, Broadhurst T, Zitrin A, Medezinski E, Hsu L-Y (2011) Cluster mass profiles from a Bayesian analysis of weak-lensing distortion and magnification measurements: applications to Subaru data. APJ 729:127. arXiv:1011.3044
  48. 48.
    Duffy AR, Schaye J, Kay ST, Vecchia CD (2008) Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology. Mon Not R Astron Soc 390:L64. arXiv:0804.2486
  49. 49.
    Barreira A, Li B, Hellwing WA, Lombriser L, Baugh CM et al (2014) Halo model and halo properties in Galileon gravity cosmologies. arXiv:1401:1497
  50. 50.
    Barreira A, Li B, Hellwing WA, Baugh CM, Pascoli S (2014) Nonlinear structure formation in nonlocal gravity. JCAP 1409(09):031. arXiv:1408.1084
  51. 51.
    Oguri M, Hamana T (2011) Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies. MNRAS 414:1851–1861. arXiv:1101.0650
  52. 52.
    Neto AF, Gao L, Bett P, Cole S, Navarro JF et al (2007) The statistics of lambda CDM halo concentrations. Mon Not R Astron Soc 381:1450–1462. arXiv:0706.2919
  53. 53.
    Schaller M, Frenk CS, Bower RG, Theuns T, Jenkins A et al (2014) The masses and density profiles of halos in a LCDM galaxy formation simulation. arXiv:1409:8617
  54. 54.
    Schaller M, Frenk CS, Bower RG, Theuns T, Trayford J et al (2014) The effect of baryons on the inner density profiles of rich clusters. arXiv:1409:8297
  55. 55.
    Meneghetti M, Rasia E, Vega J, Merten J, Postman M et al (2014) The MUSIC of CLASH: predictions on the concentration-mass relation. Astrophys J 797(1):34. arXiv:1404.1384
  56. 56.
    Falck B, Koyama K, Zhao G-B (2015) Cosmic web and environmental dependence of screening: vainshtein vs. chameleon. arXiv:1503.06673
  57. 57.
    Lam TY, Nishimichi T, Schmidt F, Takada M (2012) Testing gravity with the stacked phase space around galaxy clusters. Phys Rev Lett 109(5):051301. arXiv:1202.4501
  58. 58.
    Lam TY, Schmidt F, Nishimichi T, Takada M (2013) Modeling the phase-space distribution around massive halos. Phys Rev D88:023012. arXiv:1305.5548
  59. 59.
    Zu Y, Weinberg DH, Jennings E, Li B, Wyman M (2013) Galaxy infall kinematics as a test of modified gravity. arXiv:1310.6768
  60. 60.
    Wilcox H, Bacon D, Nichol RC, Rooney PJ, Terukina A et al (2015) The XMM cluster survey: testing chameleon gravity using the profiles of clusters. arXiv:1504:03937
  61. 61.
    Hellwing WA, Barreira A, Frenk CS, Li B, Cole S (2014) A clear and measurable signature of modified gravity in the galaxy velocity field. arXiv:1401:0706
  62. 62.
    Smith TL (2009) Testing gravity on kiloparsec scales with strong gravitational lenses. ArXiv e-prints arXiv:0907.4829
  63. 63.
    Schmidt F (2010) Dynamical masses in modified gravity. PRD 81(10):103002. arXiv:1003.0409
  64. 64.
    Zhao G-B, Li B, Koyama K (2011) Testing gravity using the environmental dependence of dark matter halos. Phys Rev Lett 107(7):071303. arXiv:1105.0922
  65. 65.
    Hearin AP (2015) Assembly bias and redshift-space distortions: impact on cluster dynamics tests of general relativity. arXiv:1501:02798
  66. 66.
    Wyman M (2011) Galilean-invariant scalar fields can strengthen gravitational lensing. Phys Rev Lett 106(20):201102. arXiv:1101.1295
  67. 67.
    Park Y, Wyman M (2014) Detectability of weak lensing modifications under galileon theories. arXiv:1408:4773
  68. 68.
    Mandelbaum R, Slosar A, Baldauf T, Seljak U, Hirata CM, Nakajima R, Reyes R, Smith RE (2013) Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7. MNRAS 432:1544–1575. arXiv:1207.1120
  69. 69.
    Heymans C, Van Waerbeke L, Miller L, Erben T, Hildebrandt H, Hoekstra H, Kitching TD, Mellier Y, Simon P, Bonnett C, Coupon J, Fu L, Déraps JH, Hudson MJ, Kilbinger M, Kuijken K, Rowe B, Schrabback T, Semboloni E, van Uitert E, Vafaei S, Velander M (2012) CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey. MNRAS 427:146–166. arXiv:1210.0032
  70. 70.
    Battye RA, Moss A, Pearson JA (2014) Constraining dark sector perturbations I: cosmic shear and CMB lensing. arXiv:1409:4650
  71. 71.
    Leonard CD, Baker T, Ferreira PG (2015) Exploring degeneracies in modified gravity with weak lensing. arXiv:1501.03509
  72. 72.
    Ade PAR et al (2015) Planck 2015 results. XIV. Dark energy and modified gravity. arXiv:1502.01590
  73. 73.
    Schaap WE, van de Weygaert R (2000) Continuous fields and discrete samples: reconstruction through delaunay tessellations. Astron Astrophys 363:L29. arXiv:astro-ph/0011007
  74. 74.
    van de Weygaert R, Schaap W (2009) The cosmic web: geometric analysis. In: Martínez VJ, Saar E, Martínez-González E, Pons-Bordería M-J (eds) Data analysis in cosmology. Lecture notes in physics, vol 665. Springer, Berlin, pp 291–413Google Scholar
  75. 75.
    Cautun M, van de Weygaert R, Jones BJT (2013) NEXUS: tracing the cosmic web connection. Mon Not R Astron Soc 429:1286–1308. arXiv:1209.2043
  76. 76.
    Cautun M, van de Weygaert R, Jones BJT, Frenk CS (2014) Evolution of the cosmic web. Mon Not R Astron Soc 441(4):2923–2973. arXiv:1401.7866
  77. 77.
    Sheth RK, van de Weygaert R (2004) A hierarchy of voids: much ado about nothing. Mon Not R Astron Soc 350:517. arXiv:astro-ph/0311260
  78. 78.
    Colberg JM, Pearce F, Foster C, Platen E, Brunino R et al (2008) The Aspen-Amsterdam void finder comparison project. Mon Not R Astron Soc 387:933. arXiv:0803.0918
  79. 79.
    Cai Y-C, Padilla N, Li B (2014) Testing gravity using cosmic voids. arXiv:1410:1510
  80. 80.
    Padilla ND, Ceccarelli L, Lambas DG (2005) Spatial and dynamical properties of voids in a lambda-CDM universe. Mon Not R Astron Soc 363:977–990. arXiv:astro-ph/0508297
  81. 81.
    Noller J, von Braun-Bates F, Ferreira PG (2014) Relativistic scalar fields and the quasistatic approximation in theories of modified gravity. Phys Rev D 89(2):023521. arXiv:1310.3266
  82. 82.
    Sawicki I, Bellini E (2015) Limits of quasi-static approximation in modified-gravity cosmologies. arXiv:1503:06831
  83. 83.
    Llinares C, Mota DF (2013) Cosmological simulations of screened modified gravity out of the static approximation: effects on matter distribution. arXiv:1312:6016
  84. 84.
    Bose S, Hellwing WA, Li B (2015) Testing the quasi-static approximation in \(f(R)\) gravity simulations. JCAP 1502(02):034. arXiv:1411.6128
  85. 85.
    Winther HA, Ferreira PG (2015) The Vainshtein mechanism beyond the quasi-static approximation. arXiv:1505:03539
  86. 86.
    Melchior P, Sutter PM, Sheldon ES, Krause E, Wandelt BD (2014) First measurement of gravitational lensing by cosmic voids in SDSS. Mon Not R Astron Soc 440:2922–2927. arXiv:1309.2045
  87. 87.
    Clampitt J, Jain B (2014) Lensing measurements of the mass distribution in SDSS voids. arXiv:1404:1834
  88. 88.
    Amendola L, Frieman JA, Waga I (1999) Weak gravitational lensing by voids. Mon Not R Astron Soc 309:465. arXiv:astro-ph/9811458
  89. 89.
    Krause E, Chang T-C, Doré O, Umetsu K (2013) The weight of emptiness: the gravitational lensing signal of stacked voids. APJL 762:L20. arXiv:1210.2446
  90. 90.
    Higuchi Y, Oguri M, Hamana T (2013) Measuring the mass distribution of voids with stacked weak lensing. MNRAS 432:1021–1031. arXiv:1211.5966
  91. 91.
    Sutter PM, Lavaux G, Wandelt BD, Weinberg DH (2012) A public void catalog from the SDSS DR7 galaxy redshift surveys based on the watershed transform. APJ 761:44. arXiv:1207.2524
  92. 92.
    Abazajian KN et al (2009) The seventh data release of the sloan digital sky survey. Astrophys J Suppl 182:543–558. arXiv:0812.0649
  93. 93.
    Barreira A, Li B, Hellwing WA, Baugh CM, Pascoli S (2013) Nonlinear structure formation in the Cubic Galileon gravity model. JCAP 2013(10):027. arXiv:1306.3219
  94. 94.
    Falck B, Koyama K, Zhao G-B, Li B (2014) The Vainshtein mechanism in the cosmic web. JCAP 1407:058. arXiv:1404.2206
  95. 95.
    Pollina G, Baldi M, Marulli F, Moscardini L (2015) Cosmic voids in coupled dark energy cosmologies: the impact of halo bias. ArXiv e-prints arXiv:1506.08831
  96. 96.
    Nadathur S, Hotchkiss S (2015) The nature of voids: II. Tracing underdensities with biased galaxies. ArXiv e-prints arXiv:1507.00197
  97. 97.
    Kravtsov AV, Berlind AA, Wechsler RH, Klypin AA, Gottlöber S, Allgood B, Primack JR (2004) The dark side of the halo occupation distribution. APJ 609:35–49. arXiv:astro-ph/0308519
  98. 98.
    Cautun M, van de Weygaert R, Jones BJT, Frenk CS (2015) Understanding the cosmic web. arXiv:1501.01306
  99. 99.
    Cautun M et al in preparationGoogle Scholar
  100. 100.
    Levi M et al (2013) The DESI Experiment, a whitepaper for Snowmass 2013. arXiv:1308.0847
  101. 101.
    Abell PA et al (2009) LSST Science Book, Version 2.0. arXiv:0912.0201
  102. 102.
    Laureijs R, Amiaux J, Arduini S, Auguères J, Brinchmann J, Cole R, Cropper M, Dabin C, Duvet L, Ealet A et al (2011) Euclid definition study report. arXiv:1110.3193L

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations