Advertisement

Nonlinear Structure Formation in Nonlocal Gravity

  • Alexandre BarreiraEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We now turn our attention to large scale structure formation in nonlocal gravity models. In these models, the modifications to gravity arise via the addition of nonlocal terms (i.e. which depend on more than one point in spacetime) to the Einstein field equations. These terms typically involve the inverse of the d’Alembertian operator, \(\Box ^{-1}\), acting on curvature tensors.

Keywords

Mass Function Dark Matter Halo Nonlocal Model Expansion History Solar System Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexandre B, Li Baojiu, Hellwing Wojciech A, Baugh Carlton M, Silvia P (2014d) Nonlinear structure formation in Nonlocal Gravity. JCAP 1409(09):031. arXiv:1408.1084
  2. 2.
    Woodard RP (2014) Nonlocal models of cosmic acceleration. Found Phys 44: 213–233. arXiv:1401.0254
  3. 3.
    Deser S, Woodard RP (2007) Nonlocal cosmology. Phys Rev Lett 99: 111301. arXiv:0904.0961
  4. 4.
    Deffayet C, Woodard RP (2009) Reconstructing the distortion function for nonlocal cosmology. JCAP 0908: 023 arXiv:0904.0961
  5. 5.
    Deser S, Woodard RP (2013) Observational viability and stability of nonlocal cosmology. JCAP 1311: 036, arXiv:1307.6639
  6. 6.
    Nojiri S, Odintsov SD (2008) Modified non-local-F(R) gravity as the key for the inflation and dark energy. Phys Lett B659: 821–826, arXiv:0708.0924
  7. 7.
    Jhingan S et al (2008) Phantom and non-phantom dark energy: the cosmological relevance of non-locally corrected gravity. Phys Lett B663: 424–428. arXiv:0803.2613
  8. 8.
    Koivisto T (2008a) Dynamics of nonlocal cosmology. Phys Rev D77: 123513. arXiv:803.3399
  9. 9.
    Koivisto TS (2008b) Newtonian limit of nonlocal cosmology. Phys Rev D78: 123505. arXiv:0807.3778
  10. 10.
    Elizalde E, Pozdeeva EO, Vernov SY (2012) De Sitter universe in nonlocal gravity. Phys Rev D 85(4):044002. arXiv:1110.5806
  11. 11.
    Elizalde E, Pozdeeva EO, Vernov SY (2013) Reconstruction procedure in nonlocal cosmological models. Class. Quantum Gravity 30(3):035002. arXiv:1209.5957
  12. 12.
    Park S, Dodelson S (2013) Structure formation in a nonlocally modified gravity model. Phys Rev D 87(2): 024003. arXiv:1209.0836
  13. 13.
    Scott D, Sohyun P (2013) Nonlocal gravity and structure in the universe. Phys Rev D. arXiv:1310:4329
  14. 14.
    Maggiore M (2014) Phantom dark energy from non-local infrared modifications of General Relativity. Phys Rev D89: 043008. arXiv:1307.3898
  15. 15.
    Foffa S, Maggiore M, Mitsou E (2014a) Cosmological dynamics and dark energy from non-local infrared modifications of gravity. Int J Mod Phys A29. arXiv:1311.4245
  16. 16.
    Kehagias A, Maggiore M (2014) Spherically symmetric static solutions in a non-local infrared modification of general relativity. JHEP. arXiv:1401.8289
  17. 17.
    Savvas N, Shinji T (2014) Cosmological perturbations and observational constraints on non-local massive gravity. Phys Rev D. arXiv:1402:4613
  18. 18.
    Maud J, Michele M, Ermis M (2013) Nonlocal theory of massive gravity. Phys Rev D. 88(4):044033. arXiv:1305.3034
  19. 19.
    Foffa S, Maggiore M, Mitsou E (2014b) Apparent ghosts and spurious degrees of freedom in non-local theories. Phys Lett B733: 76–83. arXiv:1311.3421
  20. 20.
    Modesto L, Tsujikawa S (2013) Non-local massive gravity. Phys Lett B727: 48–56. arXiv:1307.6968
  21. 21.
    Ferreira Pedro G, Maroto Antonio L (2013) A few cosmological implications of tensor nonlocalities. Phys Rev D 88(12):123502. arXiv:1310.1238
  22. 22.
    Maggiore M, Mancarella M (2014) Non-local gravity and dark energy. Phys Rev D 90: 023005. arXiv:1402.0448
  23. 23.
    Dirian Y, Foffa S, Khosravi N, Kunz M, Maggiore M (2014a) Cosmological perturbations and structure formation in nonlocal infrared modifications of general relativity. JCAP 1406: 033. arXiv:1403.6068
  24. 24.
    Capozziello S, Elizalde E, Nojiri S, Odintsov SD (2009) Accelerating cosmologies from non-local higher-derivative gravity. Phys Lett B671: 193–198. arXiv:0809.1535
  25. 25.
    Koshelev NA (2009) Comments on scalar-tensor representation of nonlocally corrected gravity. Grav Cosmol 15: 220–223. arXiv:0809.4927
  26. 26.
    Koivisto TS (2010) Cosmology of modified (but second order) gravity. AIP Conf Proc 1206: 79–96. arXiv:0910.4097
  27. 27.
    Barvinsky AO (2012) Serendipitous discoveries in nonlocal gravity theory. Phys Rev D85: 104018. arXiv:1112.4340
  28. 28.
    Will Clifford M (2014) The confrontation between general relativity and experiment. Living Rev. arXiv:1403:7377
  29. 29.
    Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107: 251102. arXiv:1107.1569
  30. 30.
    Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D 85(2):024023. arXiv:1111.6749
  31. 31.
    Ade PAR et al (2013) Planck 2013 results. XV, CMB power spectra and likelihood. arXiv:1303.5075
  32. 32.
    Ade PAR et al (2013) Planck 2013 results. XVI, Cosmological parameters. arXiv:1303.5076
  33. 33.
  34. 34.
    Yves D, Stefano F, Martin K, Michele M, Valeria P (2014b) Non-local gravity and comparison with observational datasets. arXiv:1411:7692
  35. 35.
    Romain T (2002) Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. Astron. Astrophys. 385:337–364. arXiv:astro-ph/0111367
  36. 36.
    Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93: 261101. arXiv:gr-qc/0411113
  37. 37.
    Behroozi PS, Wechsler RH, Wu H-Yi (2013) The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys J 762: 109. arXiv:1110.4372
  38. 38.
    Hellwing WA, Juszkiewicz R (2009) Dark matter gravitational clustering with a long-range scalar interaction. Phys Rev D 80(8): 083522. arXiv:0809.1976
  39. 39.
    Hellwing WA, Knollmann SR, Knebe A (2010) Boosting hierarchical structure formation with scalar-interacting dark matter. MNRAS 408:L104–L108. arXiv:1004.2929
  40. 40.
    Hellwing WA (2010) Galactic halos in cosmology with long-range scalar DM interaction. Annalen der Physik 522: 351–354. arXiv:0911.0573
  41. 41.
    Hellwing WA, Cautun M, Knebe A, Juszkiewicz R, Knollmann S (2013b) DM haloes in the fifth-force cosmology. J Cosmol Astropart Phys 10: 12. arXiv:1111.7257
  42. 42.
    Stephane C, Jaffe Andrew H, Dmitri N, Christophe P (2008) Accurate estimators of power spectra in N-body simulations. arXiv:0811:0313
  43. 43.
    Philippe B, Patrick V (2014b) K-mouflage cosmology: formation of large-scale structures. arXiv:1403:5424
  44. 44.
    Cautun MC, Weygaert van de R (2011) The dtfe public software - the delaunay tessellation field estimator code. arXiv:1105.0370
  45. 45.
    Schaap WE, van de Weygaert R (2000) Continuous fields and discrete samples: reconstruction through Delaunay tessellations. A & A 363:L29–L32. arXiv:astro-ph/0011007
  46. 46.
    Cautun M, van de Weygaert R, Jones BJT, Frenk CS (2014) Evolution of the cosmic web. Mon Not Roy Astron Soc 441: 2923–2973. arXiv:1401.7866
  47. 47.
    Cautun M, van de Weygaert R, Jones BJT (2013) NEXUS: tracing the cosmic web connection. Mon Not Roy Astron Soc 429: 1286–1308. arXiv:1209.2043
  48. 48.
    Libeskind NI, Hoffman Y, Gottlöber S (2014) The velocity shear and vorticity across redshifts and non-linear scales. Mon Not Roy Astron Soc 441: 1974–1983. arXiv:1310.5706
  49. 49.
    Li B, Hellwing WA, Koyama K, Zhao GB, Jennings E, Baugh CM (2013) The non-linear matter and velocity power spectra in f(R) gravity. Mon Not Roy Astron Soc 428: 743–755. arXiv:1206.4317
  50. 50.
    Marco B et al (2013) Cosmic degeneracies i: joint n-body simulations of modified gravity and massive neutrinos. arXiv:1311:2588
  51. 51.
    Junsup S, Jounghun L, Marco B (2014) Breaking the cosmic degeneracy between modified gravity and massive neutrinos with the cosmic web. arXiv:1404:3639
  52. 52.
    Barreira A, Li B, Baugh C, Pascoli S (2014b) \(\nu \)Galileon: modified gravity with massive neutrinos as a testable alternative to \(\Lambda \)CDM. arXiv:1404.1365
  53. 53.
    Alexandre B, Li B, Carlton B, Silvia P (2014a) The observational status of Galileon gravity after Planck. arXiv:1406:0485
  54. 54.
    Laureijs R et al (2011) Euclid definition study. Report. arXiv:1110:3193
  55. 55.
    Luca A et al (2012) Cosmology and fundamental physics with the euclid satellite. arXiv:1206:1225
  56. 56.
    Levi M et al (2013) The desi experiment, a whitepaper for snowmass 2013. arXiv:1308.0847
  57. 57.
    LSST Dark Energy Science Collaboration (2012) Large synoptic survey telescope: dark energy science collaboration. arXiv:1211.0310

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations