Advertisement

N-Body Simulations and Halo Modelling in Galileon Gravity Cosmologies

  • Alexandre BarreiraEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, our goal is to bring the excursion set theory predictions of the previous chapter on to a more quantitative level, by comparing and calibrating them with the results from N-body simulations.

References

  1. 1.
    Barreira A, Li B, Hellwing WA, Baugh CM, Pascoli S (2013) Nonlinear structure formation in the Cubic Galileon gravity model. JCAP 2013(10):027. arXiv:1306.3219
  2. 2.
    Barreira A, Li B, Hellwing WA, Lombriser L, Baugh CM et al (2014c) Halo model and halo properties in Galileon gravity cosmologies. 1401:1497Google Scholar
  3. 3.
    Sheth RK, Tormen G (1999) Large scale bias and the peak background split. Mon Not Roy Astron Soc 308:119. arXiv:astro-ph/9901122
  4. 4.
    Sheth RK, Mo HJ, Tormen G (2001) Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon Not Roy Astron Soc 323:1. arXiv:astro-ph/9907024
  5. 5.
    Sheth Ravi K, Tormen Giuseppe (2002) An excursion set model of hierarchical clustering : ellipsoidal collapse and the moving barrier. Mon Not Roy Astron Soc 329:61. arXiv:astro-ph/0105113
  6. 6.
    Li B, Zhao GB, Koyama K (2013) Exploring Vainshtein mechanism on adaptively refined meshes. JCAP, 1305: 023. arXiv:1303.0008
  7. 7.
    Li B, Barreira A, Baugh CM, Hellwing WA, Koyama K, et al (2013) Simulating the quartic Galileon gravity model on adaptively refined meshes. JCAP, 1311: 012. arXiv:1308.3491
  8. 8.
    Li B, Zhao GB, Teyssier R, Koyama K (2012) ECOSMOG: an efficient code for simulating modified gravity. JCAP, 1201: 051. arXiv:1110.1379
  9. 9.
    Dvali G, Gabadadze G, Porrati M (2000) 4D gravity on a brane in 5D Minkowski space. Phys Lett B 485:208–214 arXiv:hep-th/0005016 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Luty MA, Porrati M, Rattazzi R (2003) Strong interactions and stability in the DGP model. JHEP 9:29 arXiv:hep-th/0303116 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. JHEP 6:59 arXiv:hep-th/0404159 ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    de Rham C (2012) Galileons in the sky. Comptes Rendus Physique, 13: 666–681. arXiv:1204.5492
  13. 13.
    Schmidt, F (2009) Self-consistent cosmological simulations of DGP braneworld gravity. Phys Rev, D80: 043001. arXiv:0905.0858
  14. 14.
    Schmidt F (2009) Cosmological simulations of normal-branch braneworld gravity. Phys Rev, D80: 123003. arXiv:0910.0235
  15. 15.
    Chan KC, Roman S (2009) Large-scale structure in brane-induced gravity II. Numerical simulations. Phys Rev, D80: 104005. arXiv:0906.454800
  16. 16.
    Khoury J, Wyman M (2009) N-Body simulations of DGP and degravitation theories. Phys Rev, D80: 064023 arXiv:0903.1292
  17. 17.
    Schmidt F, Hu W, Lima M (2010) Spherical collapse and the Halo model in braneworld gravity. Phys Rev, D81: 063005. arXiv:0911.5178
  18. 18.
    Koyama K, Silva FP (2007) Non-linear interactions in a cosmological background in the DGP braneworld. Phys Rev D 75:084040. arXiv:hep-th/0702169
  19. 19.
    Fang W, Wang S, Hu W, Haiman Z, Hui L, et al (2008) Challenges to the DGP model from horizon-scale growth and geometry. Phys Rev, D78: 103509. arXiv:0808.2208
  20. 20.
    Winther HA, Ferreira PG (in preparation)Google Scholar
  21. 21.
    Cooray A, Sheth RK (2002) Halo models of large scale structure. Phys Rept 372:1–129. arXiv:astro-ph/0206508
  22. 22.
    Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. ApJ 187:425–438ADSCrossRefGoogle Scholar
  23. 23.
    Navarro JF, Frenk CS, White SDM (1997) A Universal density profile from hierarchical clustering. Astrophys. J. 490:493–508. arXiv:astro-ph/9611107
  24. 24.
    Bullock JS, Kolatt TS, Sigad Y, Somerville RS, Kravtsov AV et al (2001) Profiles of dark haloes. Evolution, scatter, and environment. Mon Not Roy Astron Soc 321:559–575. arXiv:astro-ph/9908159
  25. 25.
    Neto AF, Gao L, Bett P, Cole S, Navarro JF, et al (2007) The statistics of lambda CDM Halo concentrations. Mon Not Roy Astron Soc 381: 1450–1462. arXiv:0706.2919
  26. 26.
    Maccio’ AV, Dutton AA, van den Bosch FC (2008) Concentration, spin and shape of dark matter Haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results. arXiv:0805.1926
  27. 27.
    Prada F, Klypin AA, Cuesta AJ, Betancort-Rijo JE, Primack J (2011) Halo concentrations in the standard LCDM cosmology. arXiv:1104:5130
  28. 28.
    Teyssier R (2002) Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. Astron. Astrophys. 385:337–364. arXiv:astro-ph/0111367
  29. 29.
    Behroozi PS, Wechsler RH, Wu HY (2013) The rockstar phase-space temporal Halo finder and the velocity offsets of cluster cores. Astrophys J 762: 109. arXiv:1110.4372
  30. 30.
    Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett CL, et al (2012) Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226
  31. 31.
    Cautun MC, van de Weygaert R (2011) The DTFE public software - the delaunay tessellation field estimator code. ArXiv e-prin. arXiv:1105.0370
  32. 32.
    Schaap WE, van de Weygaert R (2000) Continuous fields and discrete samples: reconstruction through Delaunay tessellations. A&A 363:L29–L32 arXiv:astro-ph/0011007 ADSGoogle Scholar
  33. 33.
    Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404: 60–85. arXiv:0907.1659
  34. 34.
    Kravtsov AV, Berlind AA, Wechsler RH, Klypin AA, Gottloeber S et al (2004) The Dark side of the halo occupation distribution. Astrophys J 609:35–49. arXiv:astro-ph/0308519
  35. 35.
    Wake DA, Sheth RK, Nichol RC, Baugh CM, Bland-Hawthorn J, et al (2008) The 2dF-SDSS LRG and QSO survey: evolution of the clustering of luminous red galaxies since z = 0.6. Mon Not Roy Astron Soc 387: 1045–1062. arXiv:0802.4288
  36. 36.
    Zheng Z, Zehavi I, Eisenstein DJ, Weinberg DH, Jing Y (2009) Halo occupation distribution modeling of clustering of luminous red galaxies. Astrophys J 707: 554–572. arXiv:0809.1868
  37. 37.
    Sawangwit U, Shanks T, Abdalla FB, Cannon RD, Croom SM et al (2011) Angular correlation function of 1.5 million LRGs: clustering evolution and a search for BAO. Mon Not Roy Astron Soc, 416: 3033–3056. arXiv:0912.0511
  38. 38.
    Reid Beth A et al (2011) Erratum: cosmological constraints from the clustering of the sloan digital sky survey dr7 luminous red galaxies. Mon Not R Astron Soc 417(4):3103–3104ADSCrossRefGoogle Scholar
  39. 39.
    Almeida C, Baugh CM, Wake DA, Lacey CG, Benson AJ, et al (2007) Luminous red galaxies in hierarchical cosmologies. Mon Not Roy Astron Soc. arXiv:0710.3557
  40. 40.
    Banerji M, Ferreras I, Abdalla FB, Hewett P, Lahav O (2010) Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshift 0.4 and 0.8. Mon Not Roy Astron Soc 402: 2264–2278. arXiv:0910.5372
  41. 41.
    Baugh Carlton M (2006) A primer on hierarchical galaxy formation: the semi-analytical approach. Rept Prog Phys 69:3101–3156. arXiv:astro-ph/0610031
  42. 42.
    Munoz-Cuartas JC, Maccio AV, Gottlober S, Dutton AA (2010) The redshift evolution of LCDM Halo parameters: concentration, spin, and shape. arXiv:1007.0438
  43. 43.
    Ludlow AD, Navarro JF, Angulo RE, Boylan-Kolchin M, Springel V, et al (2013) The mass-concentration-redshift relation of cold dark matter Halos. arXiv:1312.0945
  44. 44.
    Maccio’ AV, Dutton AA, van den Bosch FC (2008b) Concentration, spin and shape of dark matter Haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results. arXiv:0805.1926
  45. 45.
    Komatsu E et al (2009) Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys J Suppl 180: 330–376. arXiv:0803.0547
  46. 46.
    Hellwing WA (2010) Galactic halos in cosmology with long-range scalar DM interaction. Annalen der Physik, 522: 351–354. arXiv:0911.0573
  47. 47.
    Hellwing WA, Roman J (2009) Dark matter gravitational clustering with a long-range scalar interaction. Phys Rev, D80: 083522. arXiv:0809.1976
  48. 48.
    Jeremy S (2013) Stellar oscillations in modified gravity. arXiv:1309:0495
  49. 49.
    Khoury J, Weltman A (2004) Chameleon cosmology. Phys Rev D 69:044026. arXiv:astro-ph/0309411
  50. 50.
    Mota DF, Shaw DJ (2007) Evading equivalence principle violations, cosmological and other experimental constraints in scalar field theories with a strong coupling to matter. Phys. Rev. D 75:063501. arXiv:hep-ph/0608078
  51. 51.
    Colombi S, Jaffe AH, Novikov D, Pichon C (2008) Accurate estimators of power spectra in N-body simulations. arXiv:0811:0313
  52. 52.
    Mo HJ, Jing YP, White SDM (1996) High-order correlations of peaks and halos: a step toward understanding galaxy biasing. arXiv:astro-ph/9603039
  53. 53.
    Scoccimarro R, Sheth RK, Hui L, Jain B (2001) How many galaxies fit in a halo? constraints on galaxy formation efficiency from spatial clustering. Astrophys J 546:20–34. arXiv:astro-ph/0006319
  54. 54.
    Lombriser L, Koyama K, Li B (2013a) Halo modelling in chameleon theories. arXiv:1312:1292
  55. 55.
    Smith RE et al (2003) Stable clustering, the halo model and nonlinear cosmological power spectra. Mon Not Roy Astron Soc 341:1311. arXiv:astro-ph/0207664
  56. 56.
    Takahashi R, Sato M, Nishimichi T, Taruya A, Oguri M (2012) Revising the halofit model for the nonlinear matter power spectrum. Astrophys J 761: 152. arXiv:1208.2701
  57. 57.
    Zhao G-B (2013) Modeling the nonlinear clustering in modified gravity models I: a fitting formula for matter power spectrum of f(R) gravity. arXiv:1312.1291
  58. 58.
    Schmidt F, Lima MV, Oyaizu H, Hu W (2009) Non-linear Evolution of f(R) Cosmologies III: Halo Statistics. Phys Rev, D79: 083518. arXiv:0812.0545
  59. 59.
    Gaztanaga E, Lobo JA (2001) Nonlinear gravitational growth of large scale structures inside and outside standard cosmology. Astrophys J 548: 47–59. arXiv:astro-ph/0003129
  60. 60.
    Schaefer BM, Koyama K (2008) Spherical collapse in modified gravity with the Birkhoff-theorem. Mon Not Roy Astron Soc 385:411–422. arXiv:0711.3129
  61. 61.
    Martino MC, Stabenau HF, Sheth RK (2009) Spherical collapse and modified gravity. Phys Rev D79:084013. arXiv:0812.0200
  62. 62.
    Li B, Efstathiou G (2012) An extended excursion set approach to structure formation in Chameleon models. Mon Not Roy Astron Soc 421:1431. arXiv:1110.6440
  63. 63.
    Borisov A, Jain B, Zhang P (2012) Spherical Collapse in f(R) Gravity. Phys Rev D 85:063518. arXiv:1102.4839
  64. 64.
    Lombriser L, Li B, Koyama K, Zhao G-B (2013b) Modeling halo mass functions in chameleon f(R) gravity. Phys Rev D 87:123511. arXiv:1304.6395
  65. 65.
    Kopp M, Appleby SA, Achitouv I, Weller J (2013) Spherical collapse and halo mass function in f(R) theories. arXiv:1306.3233
  66. 66.
    Taddei L, Catena R, Pietroni M (2013) Spherical collapse and halo mass function in the symmetron model. 1310:6175Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations