Spherical Collapse in Galileon Gravity

  • Alexandre BarreiraEmail author
Part of the Springer Theses book series (Springer Theses)


As we have mentioned in the previous chapters, the inclusion of data related to the growth of structure on scales \({\lesssim }10\,\mathrm{Mpc}\)/h in tests of Galileon gravity requires modelling of some physics which can only be tackled by going beyond linear theory.


Lunar Laser Range Quartic Model Spherical Collapse High Matter Density Vainshtein Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barreira A, Li B, Baugh CM, Pascoli S (2013) Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias. JCAP, 1311:056. arXiv:1308.3699
  2. 2.
    Bond JR, Cole S, Efstathiou G, Kaiser N (1991) Excursion set mass functions for hierarchical Gaussian fluctuations. ApJ 379:440–460ADSCrossRefGoogle Scholar
  3. 3.
    Barreira A, Li B, Baugh CM, Pascoli S (2012) Linear perturbations in Galileon gravity models. Phys Rev D86:124016. arXiv:1208.0600
  4. 4.
    De Felice A, Kase R, Tsujikawa S (2011) Matter perturbations in Galileon cosmology. Phys Rev D83:043515. arXiv:1011.6132
  5. 5.
    Barreira A, Li B, Sanchez A, Baugh CM, Pascoli S (2013). The parameter space in Galileon gravity models. Phys Rev D87:103511. arXiv:1302.6241
  6. 6.
    Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett et al CL (2012) Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226
  7. 7.
    Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659
  8. 8.
    Bellini E, Bartolo N, Matarrese S (2012) Spherical collapse in covariant Galileon theory. JCAP 1206:019. arXiv:1202.2712
  9. 9.
    Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107:251102. arXiv:1107.1569
  10. 10.
    Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D85:024023. arXiv:1111.6749
  11. 11.
    Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101. arXiv:gr-qc/0411113
  12. 12.
    Winther HA, Ferreira PG, in preparation Google Scholar
  13. 13.
    Andrew ZR (2007) The excursion set theory of halo mass functions, halo clustering, and halo growth. Int J Mod Phys D 16:763–816. arXiv:astro-ph/0611454
  14. 14.
    Gaztanaga E, Alberto Lobo J (2001) Nonlinear gravitational growth of large scale structures inside and outside standard cosmology. Astrophys J 548:47–59. arXiv:astro-ph/0003129
  15. 15.
    Schaefer BM, Koyama K (2008) Spherical collapse in modified gravity with the Birkhoff-theorem. Mon Not Roy Astron Soc 385:411–422. arXiv:0711.3129
  16. 16.
    Martino MC, Stabenau HF, Sheth RK (2009) Spherical collapse and modified gravity. Phys Rev D79:084013. arXiv:0812.0200
  17. 17.
    Li B, Efstathiou G (2012) An extended excursion set approach to structure formation in chameleon models. Mon Not Roy Astron Soc 421:1431. arXiv:1110.6440
  18. 18.
    Borisov A, Jain B, Zhang P (2012) Spherical collapse in f(R) gravity. Phys Rev D85:063518. arXiv: 1102.4839
  19. 19.
    Lam TY, Li B (2012) Excursion set theory for modified gravity: correlated steps, mass functions and halo bias. Mon Not Roy Astron Soc 426:3260–3270. arXiv:1205.0059
  20. 20.
    Li B, Lam TY (2012) Excursion set theory for modified gravity: Eulerian versus Lagrangian environments. 425: 730, MNRAS. arXiv:1205.0058
  21. 21.
    Joseph C, Cai Y-C (2013) Voids in modified gravity: excursion set predictions. 431:749C, MNRAS. arXiv:1212:2216
  22. 22.
    Lombriser L, Li B, Koyama K, Zhao G-B (2013) Modeling halo mass functions in chameleon f(R) gravity. Phys Rev D 87 123511. arXiv:1304.6395
  23. 23.
    Kopp M, Appleby SA, Achitouv I, Weller J (2013) Spherical collapse and halo mass function in f(R) theories. Phys Rev D. arXiv:1306.3233
  24. 24.
    Bardeen JM, Bond JR, Kaiser N, Szalay AS (1986) The statistics of peaks of Gaussian random fields. Astrophys J 304:15–61Google Scholar
  25. 25.
    Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. ApJ 187:425–438ADSCrossRefGoogle Scholar
  26. 26.
    Parfrey K, Hui L, Sheth RK (2011) Scale-dependent halo bias from scale-dependent growth. Phys Rev D83:063511. arXiv:1012.1335
  27. 27.
    Mo HJ, White SDM (1996) An analytic model for the spatial clustering of dark matter halos. Mon Not Roy Astron Soc 282:347. arXiv:astro-ph/9512127
  28. 28.
    Fry JN, Enrique G (1993) Biasing and hierarchical statistics in large scale structure. Astrophys J. 413:447–452. arXiv:astro-ph/9302009
  29. 29.
    Sheth RK, Giuseppe T (1999) Large scale bias and the peak background split. Mon Not Roy Astron Soc 308:119. arXiv:astro-ph/9901122
  30. 30.
    Sheth RK, Mo HJ, Tormen G (2001) Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon Not Roy Astron Soc 323:1. arXiv:astro-ph/9907024
  31. 31.
    Sheth RK, Giuseppe T (2002) An excursion set model of hierarchical clustering : ellipsoidal collapse and the moving barrier. Mon Not Roy Astron Soc 329:61. arXiv:astro-ph/0105113
  32. 32.
    Barreira A, Li B, Hellwing WA, Baugh CM, Pascoli S (2013) Nonlinear structure formation in the cubic Galileon gravity model. JCAP 2013(10):027. arXiv:1306.3219
  33. 33.
    Li B, Barreira A, Baugh CM, Hellwing WA, Koyama K et al (2013) Simulating the quartic Galileon gravity model on adaptively refined meshes. JCAP. arXiv:1311:012
  34. 34.
    Asantha C, Sheth RK (2002) Halo models of large scale structure. Phys Rept 372:1–129. arXiv:astro-ph/0206508

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations