The Observational Status of Galileon Gravity After Planck

  • Alexandre BarreiraEmail author
Part of the Springer Theses book series (Springer Theses)


To fully assess the observational viability of any cosmological model we must allow all of its parameters to vary within the observational constraints.


Tensor Perturbation Angular Power Spectrum Background Evolution Tracker Solution Vainshtein Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barreira A, Li B, Sanchez A, Baugh CM, Pascoli S (2013) The parameter space in Galileon gravity models. Phys Rev D87:103511 arXiv:1302.6241
  2. 2.
    Barreira A, Li B, Baugh C, Pascoli S (2014) The observational status of Galileon gravity after Planck. arXiv:1406.0485
  3. 3.
    Ade PAR et al (2013) Planck 2013 results XV. CMB power spectra and likelihood. arXiv:1303.5075
  4. 4.
    Ade PAR et al (2013) Planck 2013 results XVI. Cosmological parameters. arXiv:1303.5076
  5. 5.
    Lewis Antony, Bridle Sarah (2002) Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys Rev D 66:103511. arXiv:astro-ph/0205436
  6. 6.
    An Lm, Brooks Stephen, Gelman Andrew (1998) Stephen brooks and andrew gelman. J Comput Graph Stat 7:434–455Google Scholar
  7. 7.
    De Felice A, Tsujikawa S (2011) Generalized Galileon cosmology. Phys Rev D84:124029. arXiv:1008.4236
  8. 8.
    Neveu J, Ruhlmann-Kleider V, Conley A, Palanque-Delabrouille N, Astier P et al (2013) Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes. arXiv:1302.2786
  9. 9.
    He J-H (2013) Weighing neutrinos in \(f(R)\) gravity. Phys Rev D 88:103523. arXiv:1307.4876
  10. 10.
    Motohashi H, Starobinsky AA, Yokoyama J (2013) Cosmology based on f(R) gravity admits 1 eV sterile neutrinos. Phys Rev Lett 110(12):121302 arXiv:1203.6828
  11. 11.
    Baldi M, Villaescusa-Navarro F, Viel M, Puchwein E, Springel V et al (2013) Cosmic degeneracies I: joint N-body simulations of modified gravity and massive neutrinos. arXiv:1311:2588
  12. 12.
    Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett CL et al (2012) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226
  13. 13.
    Guy J, Sullivan M, Conley A, Regnault N, Astier P et al (2010) The supernova legacy survey 3-year sample: type ia supernovae photometric distances and cosmological constraints. Astron Astrophys 523:A7. arXiv:1010.4743
  14. 14.
    Beutler F, Blake C, Colless M, Heath Jones D, Staveley-Smith L et al (2011) The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant. Mon Not Roy Astron Soc 416:3017–3032. arXiv:1106.3366
  15. 15.
    Reid BA, Samushia L, White M, Percival WJ, Manera M et al (2012) The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: measurements of the growth of structure and expansion rate at z \(=\) 0.57 from anisotropic clustering. arXiv:1203.6641
  16. 16.
    Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659
  17. 17.
    Appleby SA, Linder EV (2012) Galileons on Trial. arXiv:1204.4314
  18. 18.
    Ade PAR et al (2013) Planck 2013 results XVII. Gravitational lensing by large-scale structure. arXiv:1303.5077
  19. 19.
    Padmanabhan N, Xiaoying X, Eisenstein DJ, Scalzo R, Cuesta AJ et al (2012) A 2 per cent distance to \(z=0.35\) by reconstructing baryon acoustic oscillations - I. Methods and application to the sloan digital sky survey. Mon Not Roy Astron Soc 427(3):2132–2145. arXiv:1202.0090
  20. 20.
    Anderson L, Aubourg E, Bailey S, Bizyaev D, Blanton M et al (2013) The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon Not Roy Astron Soc 427(4):3435–3467. arXiv:1203.6594
  21. 21.
    Blake C, Kazin E, Beutler F, Davis T, Parkinson D et al (2011) The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations. Mon Not Roy Astron Soc 418:1707–1724. arXiv:1108.2635
  22. 22.
    Barreira A, Li B, Baugh CM, Pascoli S (2012) Linear perturbations in Galileon gravity models. Phys Rev D86:124016. arXiv:1208.0600
  23. 23.
    De Felice A, Kase R, Tsujikawa S (2011) Matter perturbations in Galileon cosmology. Phys Rev D83:043515. arXiv:1011.6132
  24. 24.
    Appleby SA, Linder EV (2012) The paths of gravity in Galileon cosmology. JCAP 1203:043. arXiv:1112.1981
  25. 25.
    Okada H, Totani T, Tsujikawa S (2012) Constraints on f(R) theory and Galileons from the latest data of galaxy redshift surveys. arXiv:1208.4681
  26. 26.
    Brax P, van de Bruck C, Davis A-C, Shaw D (2010) The dilaton and modified gravity. Phys Rev D82:063519. arXiv:1005.3735
  27. 27.
    Brax P, van de Bruck C, Davis A-C, Li B, Shaw DJ (2011) Nonlinear structure formation with the environmentally dependent dilaton. Phys Rev D83:104026. arXiv:1102.3692
  28. 28.
    Brax P, Davis A-C, Li B, Winther HA, Zhao G-B (2012) Systematic simulations of modified gravity: symmetron and dilaton models. arXiv:1206:3568
  29. 29.
    Jennings E, Baugh CM, Li B, Zhao G-B, Koyama K (2012) Redshift space distortions in f(R) gravity. arXiv:1205.2698
  30. 30.
    Li B, Hellwing WA, Koyama K, Zhao G-B, Jennings E et al (2012) The nonlinear matter and velocity power spectra in f(R) gravity. arXiv:1206.4317
  31. 31.
    Nesseris S, De Felice A, Tsujikawa S (2010) Observational constraints on Galileon cosmology. Phys Rev D82:124054. arXiv:1010.0407
  32. 32.
    Alcock C, Paczynski B (1979) An evolution free test for non-zero cosmological constant. Nature 281:358ADSCrossRefGoogle Scholar
  33. 33.
    Blake C, Brough S, Colless M, Contreras C, Couch W et al (2011) The WiggleZ dark energy survey: the growth rate of cosmic structure since redshift z \(=\) 0.9. Mon Not Roy Astron Soc 415:2876. arXiv:1104.2948
  34. 34.
    Neveu J, Ruhlmann-Kleider V, Astier P, Besanon M, Conley A et al (2014) First experimental constraints on the disformally-coupled Galileon model. arXiv:1403:0854
  35. 35.
    Riess AG, Macri L, Casertano S, Lampeitl H, Ferguson HC et al (2011) A 3 space telescope and wide field camera 3. Astrophys J 730:119. arXiv:1103.2976
  36. 36.
    Humphreys EML, Reid MJ, Moran JM, Greenhill LJ, Argon AL (2013) Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astrophys J 775:13. arXiv:1307.6031
  37. 37.
    Sotiriou TP, Faraoni V. f(R) theories of gravity. Rev Mod Phys 82:451–497. arXiv:805.1726
  38. 38.
    Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659
  39. 39.
    Song Y-S, Percival WJ (2009) Reconstructing the history of structure formation using redshift distortions. J Cosmol Astropart Phys 2009(10):004. arXiv:0807.0810
  40. 40.
    Beutler F, Blake C, Colless M, Heath Jones D, Staveley-Smith L et al (2012) The 6dF galaxy survey: z \(\approx 0\) measurement of the growth rate and \(\sigma _8\). Mon Not Roy Astron Soc 423: 3430–3444. arXiv:1204.4725
  41. 41.
    Samushia L, Percival WJ, Raccanelli A (2012) Interpreting large-scale redshift-space distortion measurements. Mon Not Roy Astron Soc 420(3):2102–2119. arXiv:1102.1014
  42. 42.
    Blake C, Glazebrook K, Davis T, Brough S, Colless M et al (2011) The WiggleZ dark energy survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae. Mon Not Roy Astron Soc 418:1725–1735. arXiv:1108.2637
  43. 43.
    Barreira A, Li B, Baugh C, Pascoli S (2014) \(\nu \)Galileon: modified gravity with massive neutrinos as a testable alternative to \(\Lambda \)CDM. arXiv:1404.1365
  44. 44.
    Ade PAR et al (2013) Planck 2013 results XIX. The integrated Sachs-Wolfe effect. arXiv:1303.5079
  45. 45.
    Granett BR, Neyrinck MC, Szapudi I (2008) An imprint of super-structures on the microwave background due to the integrated Sachs-Wolfe effect. Astrophys J 683:L99–L102. arXiv:0805.3695
  46. 46.
    Granett BR, Neyrinck MC, Szapudi I (2008) Dark energy detected with supervoids and superclusters. ArXiv e-prints arXiv:0805.2974
  47. 47.
    Sutter PM, Lavaux G, Wandelt BD, Weinberg DH (2012) A public void catalog from the SDSS DR7 galaxy redshift surveys based on the watershed transform. Astrophys J 761:44. arXiv:1207.2524
  48. 48.
    Pan DC, Vogeley MS, Hoyle F, Choi Y-Y, Park C (2012) Cosmic voids in sloan digital sky survey data release 7. Mon Not Roy Astron Soc 421:926–934. arXiv:1103.4156
  49. 49.
    Hernandez-Monteagudo C, Smith RE (2012) On the signature of nearby superclusters and voids in the integrated Sachs-Wolfe effect. arXiv:1212.1174
  50. 50.
    Cai Y-C, Neyrinck MC, Szapudi I, Cole S, Frenk CS (2014) A possible cold imprint of voids on the microwave background radiation. Astrophys J 786:110. arXiv:1301.6136
  51. 51.
    Finelli F, Garcia-Bellido J, Kovacs A, Paci F, Szapudi I (2014) A supervoid imprinting the cold spot in the cosmic microwave background. arXiv:1405.1555
  52. 52.
    Szapudi I, Kovcs A, Granett BR, Frei Z, Silk J et al (2014) Detection of a supervoid aligned with the cold spot of the cosmic microwave background. arXiv:1405.1566
  53. 53.
    Boughn S, Crittenden R (2004) A correlation between the cosmic microwave background and large-scale structure in the Universe. Nature 427:45–47. arXiv:astro-ph/0305001
  54. 54.
    Ho S, Hirata C, Padmanabhan N, Seljak U, Bahcall N (2008) Correlation of CMB with large-scale structure I. Integrated Sachs-Wolfe tomography and cosmological implications. Phys Rev D 78(4):043519. arXiv:0801.0642
  55. 55.
    Giannantonio T, Crittenden R, Nichol R, Ross AJ (2012) The significance of the integrated Sachs-Wolfe effect revisited. Mon Not Roy Astron Soc 426:2581–2599. arXiv:1209.2125
  56. 56.
    Song Y-S, Peiris H, Hu W (2007) Cosmological constraints on f(R) acceleration models. Phys Rev D76:063517. arXiv:0706.2399
  57. 57.
    Giannantonio T, Song Y-S, Koyama K (2008) Detectability of a phantom-like braneworld model with the integrated Sachs-Wolfe effect. Phys Rev D78:044017. arXiv:0803.2238
  58. 58.
    Francis CL, Peacock JA (2010) An estimate of the local ISW signal, and its impact on CMB anomalies. Mon Not Roy Astron Soc 406:14. arXiv:0909.2495
  59. 59.
    Francis CL, Peacock JA (2010) ISW measurements with photometric redshift surveys: 2MASS results and future prospects. Mon Not Roy Astron Soc 406:2. arXiv:0909.2494
  60. 60.
    Hernandez-Monteagudo C (2009) Revisiting the WMAP - NVSS angular cross correlation. A skeptic view. arXiv:0909.4294
  61. 61.
    Sawangwit U, Shanks T, Cannon RD, Croom SM, Ross NP et al (2010) Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect. Mon Not Roy Astron Soc 402:2228. arXiv:0911.1352
  62. 62.
    Lopez-Corredoira M, Sylos Labini F, Betancort-Rijo J (2010) Absence of significant cross-correlation between WMAP and SDSS. Astron Astrophys 513:A3. arXiv:1001.4000
  63. 63.
    Efstathiou G (2013) H0 Revisited. arXiv:1311.3461
  64. 64.
    Heymans C, Grocutt E, Heavens A, Kilbinger M, Kitching TD et al (2013) CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. arXiv:1303.1808
  65. 65.
    Ade PAR et al (2013) Planck 2013 results XX. Cosmology from Sunyaev-Zeldovich cluster counts. arXiv:1303.5080
  66. 66.
    Wyman M, Rudd DH, Ali Vanderveld R, Hu W (2014) \(\nu \Lambda \)CDM: neutrinos help reconcile Planck with the local Universe. Phys Rev Lett 112:051302. arXiv:1307.7715
  67. 67.
    Battye RA, Moss A (2014) Evidence for massive neutrinos from CMB and lensing observations. Phys Rev Lett 112:051303. arXiv:1308.5870
  68. 68.
    Drexlin G, Hannen V, Mertens S, Weinheimer C (2013) Current direct neutrino mass experiments. Adv High Energy Phys 2013:293986. arXiv:1307.0101
  69. 69.
    Kraus Ch, Bornschein B, Bornschein L, Bonn J, Flatt B et al (2005) Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur Phys J C40:447–468. arXiv:hep-ex/0412056
  70. 70.
    Aseev VN et al (2011) An upper limit on electron antineutrino mass from Troitsk experiment. Phys Rev D84:112003. arXiv:1108.5034
  71. 71.
  72. 72.
    Vergados JD, Ejiri H, Simkovic F (2012) Theory of neutrinoless double beta decay. Rept Prog Phys 75:106301. arXiv:1205.0649
  73. 73.
    Jennings E, Baugh CM, Pascoli S (2011) Modelling redshift space distortions in hierarchical cosmologies. MNRAS 410:2081–2094. arXiv:1003.4282
  74. 74.
    Wyman M, Jennings E, Lima M (2013) Simulations of Galileon modified gravity: clustering statistics in real and redshift space. Phys Rev D88:084029. arXiv:1303.6630
  75. 75.
    Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a Vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107:251102. arXiv:1107.1569
  76. 76.
    Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D85:024023. arXiv:1111.6749
  77. 77.
    Barreira A, Li B, Baugh CM, Pascoli S (2013) Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias. JCAP, 1311:056. arXiv:1308.3699
  78. 78.
    Barreira A, Li B, Hellwing WA, Lombriser L, Baugh CM et al (2014) Halo model and halo properties in Galileon gravity cosmologies. arXiv:1401:1497
  79. 79.
    Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101. arXiv:gr-qc/0411113
  80. 80.
    De Felice A, Tsujikawa S (2012) Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models. JCAP 1202:007. arXiv:1110.3878
  81. 81.
    Challinor A, Lasenby A (1999) Cosmic microwave background anisotropies in the CDM model: a covariant and gauge invariant approach. Astrophys J 513:1–22. arXiv:astro-ph/9804301
  82. 82.
    Challinor A (2000) Microwave background anisotropies from gravitational waves: the (1+3) covariant approach. Class Quant Grav 17:871–889. arXiv:astro-ph/9906474
  83. 83.
    Challinor A (2000) Microwave background polarization in cosmological models. Phys Rev D 62:043004. arXiv:astro-ph/9911481
  84. 84.
    Ade PAR et al (2014) Detection of B-mode polarization at degree angular scales by BICEP2. Phys Rev Lett 112:241101. arXiv:1403.3985

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations