Advertisement

Temporal Random Testing for Spark Streaming

  • Adrián RiescoEmail author
  • Juan Rodríguez-Hortalá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9681)

Abstract

With the rise of Big Data technologies, distributed stream processing systems (SPS) have gained popularity in the last years. Among them, Spark Streaming stands out as a particularly attractive option with a growing adoption in the industry. In this work we explore the combination of temporal logic and property-based testing for testing Spark Streaming programs, by adding temporal logic operators to ScalaCheck generators and properties. This allows us to deal with the time component that complicates the testing of Spark Streaming programs and SPS in general. In particular we propose a discrete time linear temporal logic for finite words, that allows to associate a timeout to each temporal operator in order to increase the expressiveness of generators and properties. Finally, our prototype is presented with some examples.

Keywords

Stream processing systems Spark streaming Property-based testing Random testing Linear temporal logic Scala Big data 

References

  1. 1.
    Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R., McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: MillWheel: fault-tolerant stream processing at internet scale. Proc. VLDB Endowment 6(11), 1033–1044 (2013)CrossRefGoogle Scholar
  2. 2.
    Barringer, H., Havelund, K.: TraceContract: A scala DSL for trace analysis. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional, Boston (2003)Google Scholar
  6. 6.
    Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, Philadelphia (2006)Google Scholar
  7. 7.
    Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)CrossRefGoogle Scholar
  8. 8.
    Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In: Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, TIME, pp. 166–174. IEEE Computer Society (2005)Google Scholar
  10. 10.
    Halbwachs, N.: Synchronous programming of reactive systems. Springer International Series in Engineering and Computer Science, vol. 215. Kluwer Academic Publishers, Dordrecht (1992)zbMATHGoogle Scholar
  11. 11.
  12. 12.
    Kuhn, R., Allen, J.: Reactive Design Patterns. Manning Publications, Greenwich (2014)Google Scholar
  13. 13.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Program. 78(5), 293–303 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., Stamford (2015)Google Scholar
  15. 15.
    Morales, G.D.F., Bifet, A.: SAMOA: Scalable advanced massive online analysis. J. Mach. Learn. Res. 16, 149–153 (2015)zbMATHGoogle Scholar
  16. 16.
    Nilsson, R.: ScalaCheck: The Definitive Guide. IT Pro, Artima Incorporated, Upper Saddle River (2014)Google Scholar
  17. 17.
    Pnueli, A.: Applications of temporal logic to the specification and verification of reactive systems: a survey of current trends. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–584. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  18. 18.
    Raymond, P., Roux, Y., Jahier, E.: Lutin: a language for specifying and executing reactive scenarios. EURASIP J. Emb. Syst. 2008, 1–11 (2008). Article ID: 753821Google Scholar
  19. 19.
    Riesco, A., Rodríguez-Hortalá, J.: A lightweight tool for random testing of stream processing systems (extended version). Technical Report SIC 02/15, Departamento de Sistemas Informáticos y Computación de la Universidad Complutense de Madrid, September 2015. http://maude.sip.ucm.es/~adrian/pubs.html
  20. 20.
    Schelter, S., Ewen, S., Tzoumas, K., Markl, V.: All roads lead to Rome: optimistic recovery for distributed iterative data processing. In: Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pp. 1919–1928. ACM (2013)Google Scholar
  21. 21.
    Shamshiri, S., Rojas, J.M., Fraser, G., McMinn P.: Random or genetic algorithm search for object-oriented test suite generation? In: Proceedings of the on Genetic and Evolutionary Computation Conference, pp. 1367–1374. ACM (2015)Google Scholar
  22. 22.
    Venners, B.: Re: Prop.exists and scalatest matchers (2015). https://groups.google.com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ
  23. 23.
    Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, p. 2. USENIX Assoc (2012)Google Scholar
  25. 25.
    Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant streaming computation at scale. In: Proceedings of the 24th ACM Symposium on Operating Systems Principles, pp. 423–438. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universidad Complutense de MadridMadridSpain

Personalised recommendations