Advertisement

Symbolic Reachability Analysis of B Through ProB and LTSmin

  • Jens Bendisposto
  • Philipp Körner
  • Michael Leuschel
  • Jeroen Meijer
  • Jaco van de Pol
  • Helen Treharne
  • Jorden Whitefield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9681)

Abstract

We present a symbolic reachability analysis approach for B that can provide a significant speedup over traditional explicit state model checking. The symbolic analysis is implemented by linking ProB to LTSmin, a high-performance language independent model checker. The link is achieved via LTSmin ’s Pins interface, allowing ProB to benefit from LTSmin ’s analysis algorithms, while only writing a few hundred lines of glue-code, along with a bridge between ProB and C using ØMQ. ProB supports model checking of several formal specification languages such as B, Event-B, Z and \({\textsc {Tla}}^{+}\). Our experiments are based on a wide variety of B-Method and Event-B models to demonstrate the efficiency of the new link. Among the tested categories are state space generation and deadlock detection; but action detection and invariant checking are also feasible in principle. In many cases we observe speedups of several orders of magnitude. We also compare the results with other approaches for improving model checking, such as partial order reduction or symmetry reduction. We thus provide a new scalable, symbolic analysis algorithm for the B-Method and Event-B, along with a platform to integrate other model checking improvements via LTSmin in the future.

Keywords

B-Method Event-B ProB LTSmin Symbolic reachability 

References

  1. 1.
    Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  3. 3.
    Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bendisposto, J.: Directed and Distributed Model Checking of B Specifications. Ph.D. thesis, University of Düsseldorf (2015). http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=34472
  5. 5.
    Bendisposto, J., Körner, P., Leuschel, M., Meijer, J., van de Pol, J., Treharne, H., Whitefield, J.: Symbolic Reachability Analysis of B through ProB and LTSmin. CoRR abs/1603.04401 (2016)Google Scholar
  6. 6.
    Bicarregui, J.C., Fitzgerald, J.S., Larsen, P.G., Woodcock, J.C.P.: Industrial practice in formal methods: a review. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 810–813. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. IC 98(2), 142–170 (1992)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for symbolic state-space exploration. STTT 8(1), 4–25 (2006)CrossRefGoogle Scholar
  10. 10.
    Derrick, J., North, S., Simons, A.J.H.: Z2SAL - building a model checker for Z. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 280–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Dobrikov, I., Leuschel, M.: Optimising the ProB model checker for B using partial order reduction. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 220–234. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Hansen, D., Leuschel, M.: Translating B to TLA\(^ \text{+ } \) for validation with TLC. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 40–55. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media Inc, Sebastopol (2013)Google Scholar
  15. 15.
    Hörne, T., van der Poll, J.A.: Planning as model checking: the performance of ProB vs NuSMV. In: SAICSIT Conference ACM ICPS, vol. 338, pp. 114–123. ACM (2008)Google Scholar
  16. 16.
    James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H., Trumble, M., Williams, D.: Verification of scheme plans using CSP\(||\)B. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 189–204. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015)Google Scholar
  18. 18.
    Laarman, A., Pater, E., Pol, J., Hansen, H.: Guard-based partial-order reduction. Int. J. Softw. Tools Technol. Transfer, 1–22 (2014). doi: 10.1007/s10009-014-0363-9
  19. 19.
    Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. STTT 10(2), 185–203 (2008)CrossRefGoogle Scholar
  20. 20.
    Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry markers. Ann. Math. Artif. Intell. 59(1), 81–106 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Matos, P.J., Fischer, B., Marques-Silva, J.: A lazy unbounded model checker for Event-B. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 485–503. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    McMillan, K.L.: Symbolic Model Checking. Ph.D. thesis, Boston (1993)Google Scholar
  23. 23.
    Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 204–219. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Molnár, V., Darvas, D., Vörös, A., Bartha, T.: Saturation-based incremental LTL model checking with inductive proofs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 643–657. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical report, SRI International, technical Report SRI-CSL-01-02 (Rev. 2) (2003)Google Scholar
  26. 26.
    Plagge, D., Leuschel, M.: Seven at a stroke: LTL model checking for high-level specifications in B, Z, CSP, and more. STTT 11, 9–21 (2010)CrossRefGoogle Scholar
  27. 27.
    Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-based model checking of petri nets. In: Proceedings ATPN, pp. 374–391 (1995)Google Scholar
  28. 28.
    Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal Asp. Comput. 17(4), 390–422 (2005)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sloan, S.W.: A FORTRAN program for profile and wavefront reduction. Int. J. Numer. Meth. Eng. 28(11), 2651–2679 (1989)CrossRefzbMATHGoogle Scholar
  30. 30.
    Whitefield, J.: Linking ProB and LTSmin (2015), Final Year Dissertation, University of SurreyGoogle Scholar
  31. 31.
    Winter, K.: Optimising ordering strategies for symbolic model checking of railway interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 246–260. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Yu, Y., Manolios, P., Lamport, L.: Model checking TLA\(^+\) specifications. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jens Bendisposto
    • 1
  • Philipp Körner
    • 1
  • Michael Leuschel
    • 1
  • Jeroen Meijer
    • 2
  • Jaco van de Pol
    • 2
  • Helen Treharne
    • 3
  • Jorden Whitefield
    • 3
  1. 1.Institut für InformatikHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Formal Methods and ToolsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Computer ScienceUniversity of SurreyGuildfordUK

Personalised recommendations