Advertisement

Turbulent Mixing Length Models and Their Applications to Elementary Flow Configurations

  • Kolumban HutterEmail author
  • Yongqi Wang
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

In comparison to Chap.  15, this chapter goes back one step by scrutinizing the early zeroth order closure relations as proposed by Prandtl, von Kármán and collaborators. The basis is Bossinesq’s (Mém. Prés. Div. Savant Acad. Sci. Paris, 23:46 [3]) ansatz for the shear stress in plane parallel flow, \(\tau _{12}\), which is postulated to be proportional to the corresponding averaged shear rate \(\partial v_{1}/\partial x_{2}\) with coefficient of proportionality \(\rho \varepsilon \), where \(\rho \) is the density and \(\varepsilon \) a kinematic turbulent viscosity or turbulent diffusivity \((\mathrm {m}^{2}\mathrm {s}^{-1}\)). In turbulence theory the flux terms of momentum, heat and suspended mass are all parameterized as gradient-type relations with turbulent diffusivities treated as constants. Prandtl realized from data collected in his institute that \(\varepsilon \) was not a constant but depended on his mixing length squared and the magnitude of the shear rate (Prandtl, ZAMM 5:136–139, [23]). This proposal was later improved (“Prandtl (1942), Abriss der Strömungslehre” Prandtl [25]) to amend the unsatisfactory agreement at positions where shear rates disappeared. The 1942-law is still local, which means that the Reynolds stress tensor at a spatial point depends on spatial velocity derivatives at the same position. Prandtl, in a second proposal of his 1942-paper suggested that the turbulent diffusivity should depend on the velocity difference at the points where the velocity of the turbulent path assumes maximum and minimum values. This proposal introduces some non-locality, and it yielded better agreement with data, but Prandtl left the non-gradient-type dependence in order to stay in conformity with Boussinesq. It does become neither apparent nor clear that Prandtl or the modelers at that time would have realized that non-local effects would be the cause for better agreement of the theoretical formulations with data. The proposal of complete nonlocal behavior of the Reynolds stress parameterization came in 1991 by P. Egolf and subsequent research articles during 20 years, in which also the local strain rate (\(=\)local velocity gradient) is replaced by a difference quotient. We motivate and explain the proposed Difference Quotient Turbulence Model (DQTM) and demonstrate that for standard two-dimensional configurations analyzed in this chapter its performance is superior to other zeroth order models.

Keywords

Local/nonlocal turbulent stress closure Criticisms on zeroth order local stress closures Prandtl turbulent plane wake Axisymmetric isothermal jet Turbulent jet in parallel co-flow Plane Poiseuille flow 

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, USA (1964)Google Scholar
  2. 2.
    Bernard, P.S., Handler, R.A.: Reynolds stress and the physics of turbulent momentum transfer. J. Fluid Mech. 220, 90–124 (1990)Google Scholar
  3. 3.
    Boussinesq, J.: Essai sur la théorie des eaux courantes. Mém.Prés. Div. Savant Acad. Sci. Paris. 23, 46 (1872)Google Scholar
  4. 4.
    Corrsin, S.: Limitations of gradient transport models in random walks and in turbulence. Adv. Geophys. 18A, 25–60 (1974)Google Scholar
  5. 5.
    Corrsin, S., Uberoi, M.S.: Further Experiments on the Flow and Heat Transfer in a Heated Turbulent Air Jet. Technical note Technical Note (United States. National Advisory Committee for Aeronautics), no. 1865. Washington, National Advisory Committee for Aeronautics (1949)Google Scholar
  6. 6.
    Egolf, P.W.: A new model on turbulent shear flows. Helv. Phys. Acta. 64, 944–946 (1991)Google Scholar
  7. 7.
    Egolf, P.W.: Die mittlere Geschwindigkeit längs der Achse eines isothermen Freistrahles. Gesundheits-Ingenieur (1992)Google Scholar
  8. 8.
    Egolf, P.W.: Difference-quotient turbulence model: a generalization of Prandtl’s mixing-length theory. Phys. Rev. E, 49(2), 1260–1268 (1994)Google Scholar
  9. 9.
    Egolf, P.W., Weiss, D.A.: Difference-quotient turbulence model: the axisymmetric isothermal jet. Phys. Rev. E. 58(1), 459–470 (1998)Google Scholar
  10. 10.
    Egolf, P.W., Weiss, D.A.: Difference-quotient turbulence model: analytical solutions for the core region of plane Poiseuillle flow. Phys. Rev. E. 62(1), 553–563 (2000)Google Scholar
  11. 11.
    Görtler, H.: Asymptotische Eigenwertgesetze bei Differentialgleichungen vierter Ordnung. Volume 26 of Mitteilungen aus dem Mathematischen Seminar der Universität Giessen, Universitt Gieen, Mathematisches Seminar (1936)Google Scholar
  12. 12.
    Görtler, H.: Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes. Zeitschr. Angew. Math. Mech. (ZAMM). 22(5), 244–254 (1942)Google Scholar
  13. 13.
    Gschwind, P.: Strömungs- und Transportvorgänge in gewellten Kanälen mit ineinander liegender Anordnung der Wände. PhD thesis, Universität Stuttgart (2000)Google Scholar
  14. 14.
    Hinze, O.: Turbulence, 2nd edn. MacGraw Hill, New York (1975)Google Scholar
  15. 15.
    Holmes, P., Lumley, J.l., Berkoos, G.: Turbulence coherence Structures, Dynamical Systems and Symmetry. Cambridge University Press Press, Cambridge (1998) ISBN 978-0-521-63419-9Google Scholar
  16. 16.
    Holton, J.R.: An Introduction to Dynamic Meteorology. International Geophysics Series, vol. 23. Academic Press, New York (1979)Google Scholar
  17. 17.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)Google Scholar
  18. 18.
    Laufer, J.: National Advisory Committee for Aeronautics. Technical Report No. 1774 (1951)Google Scholar
  19. 19.
    Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)Google Scholar
  20. 20.
    Lumley, J.L., Panowsky, H.A.: The Structure of Atmospheric Turbulence. Wiley, New York (1964)Google Scholar
  21. 21.
    Pai, S.I.: On turbulent flow between parallel plates. J. Appl. Mech. 20, 109 (1953)Google Scholar
  22. 22.
    Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymrnetric jets of air and helium Part 1. Air jet. J. Fluid Mech. 247, 197–223 (1993)Google Scholar
  23. 23.
    Prandtl, L.: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschr. Angew. Math. Mech. (ZAMM). 5(2), 136–139 (1925)Google Scholar
  24. 24.
    Prandtl, L.: Neuere Ergebnisse der Turbulenzforschung. Zeitschr. VDI, 77, 105–113 (1933)Google Scholar
  25. 25.
    Prandtl, L.: Abriss der Strömungslehre, 3rd edn. Vieweg, Braunschweig (1942)Google Scholar
  26. 26.
    Reichardt, H.: Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Zeitschr. Angew. Math. Mech. 31(7), 208 (1951)Google Scholar
  27. 27.
    Reichardt, H.: Gesetzmäßigkeiten der freien Turbulenz. VDI-Forschungsheft 414, 2. erweiterte Auflage II + 30 S. mit 18 Abb. Düsseldorf (1951)Google Scholar
  28. 28.
    Ricou, F.P., Spalding, D.B.: Measurements of entrainment by axisymmetrical turbulent Jets. J. Fluid Mech. 11, 21–32 (1961)Google Scholar
  29. 29.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972)Google Scholar
  30. 30.
    Wyganski, I., & Fiedler, J. (1969). Some measurements in the self-preserving jet. J. Fluid Mech., 38, 577–612.CrossRefGoogle Scholar
  31. 31.
    Zagrola, M.V., Perry, A.E., Smits, A.J.: Log laws and power laws: the scaling of the overlap region. Phys. Fluids. 9, 2094–2100 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.c/o Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations