Advertisement

Turbulent Modeling

  • Kolumban HutterEmail author
  • Yongqi Wang
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

In this chapter a detailed introduction to the modeling of turbulence is given. Filter operations are introduced to separate the physical balance laws into evolution equations for the averaged fields on the one hand, and into fluctuating or pulsating fields on the other hand. The mathematical properties of the filter define the structure of the averaged equations. Reynolds introduced the steady statistical filter, leading to the Reynolds averaged NavierStokes equations. This procedure generates averages of products of fluctuating quantities, for which closure relations must be formulated. Depending upon the complexity of these closure relations, so-called zeroth, first and higher order turbulence models are obtained: simple algebraic gradient-type relations for the flux terms, one or two equation models, e.g., \(k-\varepsilon \), \(k-\omega \) models, in which evolution equations for the averaged correlation products for k and \(\varepsilon \) are formulated, etc. This is done for density preserving fluids as well as so-called Boussinesq and convection fluids on a rotating frame (Earth), which are important models to describe atmospheric and oceanic flows.

Keywords

Statistical filter operator Reynolds averaged NavierStokes equations Closure relations for fluctuating correlation terms Open image in new window models Boussinesq, convection fluids 

References

  1. 1.
    Aczel, A.D.: Pendulum – Léon Foucault and the Triumph of Science. Washington Square Press, New York (2003). ISBN 0-74344-6439-6Google Scholar
  2. 2.
    Bäuerle, E., Chubarenko, B., Chubarenko I., Halder, J., Hutter, K., Wang, Y.: Autumn physical limnological experimental campaign in the Mainau Island Limnological Zone of Lake Constance (Constance Data Band) 12 October–19 November 2001. Report of the ‘Sonderforschungsbereich 454 Bodenseelittoral’, 85 p. (2001)Google Scholar
  3. 3.
    Boussinesq, J.: Essay sur la téotie des eaux courrantes. Mémoires présentés par div. Savants l’ Academie des Sciences de l’ Institut de France. Tome 23 (avec supplément in Tome 24) (1872)Google Scholar
  4. 4.
    Egolf, P.W.: Difference-quotient turbulent model: a generalization of Prandtl’s mixing length theory. Phys. Rev. E 49(2), 1260–1268 (1994)CrossRefGoogle Scholar
  5. 5.
    Gad-el-Hak, M.: Flow Control: Passive, Active and Research Flow Management. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  6. 6.
    Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609–638 (1972)CrossRefGoogle Scholar
  7. 7.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling, 635 pp. Springer, Berlin (2004)Google Scholar
  8. 8.
    Hutter, K., Wang, Y., Chubarenko, I.: Physics of Lakes, Volume 1: Foundation of the Mathematical and Physical Background, 434 pp. Springer, Berlin (2011)Google Scholar
  9. 9.
    Jones, W.P., Launder, B.E.: The prediction of laminarisation with a two equation model of turbulence. J. Heat Mass Transf. 15, 301–314 (1972)CrossRefGoogle Scholar
  10. 10.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flow. Comput. Methods Appl. Mech. Eng. 3, 269–288 (1974)CrossRefGoogle Scholar
  11. 11.
    Prandtl, L.: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für angewandte Mathmatik und Mechanik (ZAMM) 5(2), 136–39 (1925)Google Scholar
  12. 12.
    Prandtl, L.: Neuere Ergebnisse der Turbulenzforschung. Zeitschr. VDI 77, 105–113 (1933)Google Scholar
  13. 13.
    Prandtl, L.: Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Göttingen Math.-Phys. Klasse, pp. 6–19 (1945)Google Scholar
  14. 14.
    Reynolds, O.: An experimental investigation of circumstances, which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. A 174, 935–982 (1883)CrossRefGoogle Scholar
  15. 15.
    Reynolds, O.: On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A 186, 123–164 (1894)Google Scholar
  16. 16.
    Rodi, W.: Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. C5(92), 5305–5328 (1987)CrossRefGoogle Scholar
  17. 17.
    Rodi, W.: Turbulence Models and their Application in Hydraulics IAHR Monograph Series. A.A. Balkema, Rotterdam/Brookfield (1993)Google Scholar
  18. 18.
    Schmidt, E.H.W.: Einführung in die technische Thermodynamik und in die Grundlagen der chemischen Thermodynamik, 10th edn. Springer, Berlin (1963)CrossRefGoogle Scholar
  19. 19.
    Svensson, U.: A mathematical model for the seasonal variation of the thermocline, Report 1002, Department of WaterResources Engineering, University of Lund, Sweden, 187 pp. (1978)Google Scholar
  20. 20.
    Umlauf, L.: Turbulence Parameterization in Hydro-Biological Models for Natural Waters. Ph.D. Dissertation, Department of Mechanics, Darmstadt University of Technology, Darmstadt, Germany, 231 p. (2001)Google Scholar
  21. 21.
    Vogel-Prandtl, J.: Ludwig Prandtl, a Personal Biography Drawn from Memories and Correspondence. Universitätsverlag Göttingen, 248 p. (2014)Google Scholar
  22. 22.
    Weis, J.: Ein algebraisches Reynolds Spannungs-Modell. Ph.D. Dissertation, Department of Mechanics, Darmstadt University of Technology, Darmstadt, Germany, 111 p. (2001)Google Scholar
  23. 23.
    Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26(11), 1299–1310 (1988)CrossRefGoogle Scholar
  24. 24.
    Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Industries, Inc., La Canada (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.c/o Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations