Shallow Rapid Granular Avalanches

  • Kolumban HutterEmail author
  • Yongqi Wang
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


This chapter is devoted to rapid granular flows in an attempt to introduce the reader to the challenging theory of the dynamical behavior of fluidized beds. The peculiar behavior of such materials is exhibited in typical responses such as ‘dilatancy’, ‘liquefaction’, (size) ‘segregation’, ‘normal and inverse grading’ etc. The fluid mechanical description of cohesionless granular materials—dry or wet—in avalanches of snow, debris and mud also applicable to transport of dry granular materials in industrial production chains, follows continuum and discrete descriptions. The theoretical modeling of moving layers of granular assemblies begins with the one-dimensional depth integrated MohrCoulomb plastic layer flows down inclines—the earliest description being the so-called Voellmy model (1955), extended by the Savage-Hutter theory (1989) and its extensions—but then continues with the general formulation of the model equations referred to topography-following curvilinear coordinates, with all its peculiarities in the theory and the use of shock-capturing numerical integration techniques. Detailed comparison of computational results with laboratory chute flows and field events demonstrate the suitability of the various models.


Dilatancy Segregation Liquefaction Shallow flow models Curvilinear coordinates Shock capturing numerical techniques Laboratory chute flows Field events of large landslides 


  1. 1.
    Ambraseys, N., Sarma, S.: Liquefaction by soils induced by earthquakes. Bull. Seismol. Soc. Am. 59(2), 651–664 (1969)Google Scholar
  2. 2.
    Amstutz, Ed, Staub, A.: Dr. A. Voellmy zum 65. Geburtstag. Schweiz. Bauzeitung 85(28), 481 (1965)Google Scholar
  3. 3.
    Armstrong, B.R., Williams, K.: The Avalanche Book. Fulcrum Publishing Golden, CO, Golden (1986), (1992)Google Scholar
  4. 4.
    Ansey, Ch., Meunier, M.: Estimating bulk rheological properties of flowing avalanches from the field data. J. Geophys. Res. 109, NoF1:F001004 (2003). doi: 10.1029/2003JF0036 Google Scholar
  5. 5.
    Bardet, J.P., Kapuskar, M.: Liquefaction and sand boils in San Francisco during 1989 Loma Prieta earthquake ASCE. J. Geotech. Eng. 119, 543–562 (1993)CrossRefGoogle Scholar
  6. 6.
    Bassi, F., Ghidoni, A., Rebay, S., Tesini, P.: High-order accurate p-multigrid discontinuous Galerkin solution of the Euler equations. Int. J. Numer. Meth. Fluids 60, 847–865 (2008)CrossRefGoogle Scholar
  7. 7.
    Bowen, R., Wang, C.C.: Introduction to Vectors and Tensors. Vol. I Linear and Multilinear Algebra; Vol. 2 Vector and Tensor Analysis. Plenum Press, New York (1976)Google Scholar
  8. 8.
    Brillouin, L.: Tensors in Mechanics and Elasticity. Academic Press, New York (1964)Google Scholar
  9. 9.
    Bouchut, F., Westdickenberg, M.: Gravity driven shallow water models for arbitrary topography. Commun. Appl. Math. Sci. 2(3), 359–389 (2004)CrossRefGoogle Scholar
  10. 10.
    Casagrannde, A.: Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng. (1936)Google Scholar
  11. 11.
    Chen, H., Lee, C.F.: Numerical simulation of debris flows. Can. Geotech. J. 37, 146–160 (2000)CrossRefGoogle Scholar
  12. 12.
    Chiou, M., Wang, Y., Hutter, K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005)CrossRefGoogle Scholar
  13. 13.
    Chiou, M.: Modelling dry granular avalanches past different obstruct (Elektronische Ressource): numerical simulations and laboratory analyses. Ph.D. thesis, TU Darmstadt (2005)Google Scholar
  14. 14.
    Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular material across three-dimensional terrain 2. Numerical predictions and experimental tests. J. Geophys. Res. 106, 553–566 (2001)CrossRefGoogle Scholar
  16. 16.
    Denlinger, R.P., Iverson, R.M.: Granular avalanches across irregular three-dimensional terrain. 1. Theory and computation. J. Geophys. Res. 109 (2004). doi: 10.11029/2003JF00085
  17. 17.
    Dent, J.D., Burrel, K.J., Schmidt, D.S., Louge, M.Y., Adams, E.E., Jazbutis, T.G.: Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 26, 247–252 (1998)Google Scholar
  18. 18.
    De Toni, S., Scotton, P.: Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Reg. Sci. Technol. 43, 36–48 (2005)CrossRefGoogle Scholar
  19. 19.
    Dolejsi, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comp. Phys. 198, 727–746 (2004)CrossRefGoogle Scholar
  20. 20.
    Eckart, W., Faria, S., Hutter, K, Kirchner, N. Pudasaini, S,P., Wang, Y.: Continuum description of granular materials. Spring School at the Department of Structural and Geotechnical Engineering, Polytechnic Institute, Turin, Italy, 8–12 April 2002Google Scholar
  21. 21.
    Eckart, W., Gray, JM.N.T. and Hutter, K.: Particle image velocimetry (PIV) for granular avalanches on inclined planes. In: Hutter, K., Kirchner, N. (eds.) Dynamic Response of Granular and Porous Materials Under Catastrophic Deformations. Springer, Berlin (2003)Google Scholar
  22. 22.
    Eglit, M.E.: Theoretical approaches to the calculation of the motion of snow avalanches. In: Itogi Nauki, Moscow, Viniti 60–97. English translation in Glaciological Data Report GD-16, 63–118 (1974)Google Scholar
  23. 23.
    Eglit, M.E., Shveshnikoya, E.I.: Mathematical modeling of snow avalanches (in Russian). English translation Data of Glaciological Studies 38, 79–84 (1980)Google Scholar
  24. 24.
    Eglit, M.E.: Calculation of the parameters of avalanches in the region of breaking and halting (in Russian). English translation Data of Glaciological Studies 53, 35–39 (1982)Google Scholar
  25. 25.
    Eglit, M.E.: Some mathematical models of snow avalanches. In: Shahinpoor, M. (ed.) Advances in mechanics and the flow of granular materials, vol. 2, pp. 577–588. Clausthal-Zellerfeld and Gulf Publishing Company, Houston (1983)Google Scholar
  26. 26.
    Eglit, M.E.: Mathematical modeling of dense avalanches. In: 25 Years of Snow Avalanche Research at NGI. Anniversary Conference, Voss, Norway, 12–26 May 1998Google Scholar
  27. 27.
    Erismann, T., Abele, G.: Dynamics of Rockslides and Rockfalls. Springer, Berlin, (2001)Google Scholar
  28. 28.
    Evans, S.G.: Landslides. In: Brooks, G.R. (ed.) A synthesis of geological hazards in Canada. Geol. Surv. Can. Bull. 548, 43–79 (2001)Google Scholar
  29. 29.
    Gray, J.M.N.T., Hutter, K.: Physik granularer Lawinen. Physikalische Blätter, 54, 37–44 (1998)Google Scholar
  30. 30.
    Gray, J.M.N.T., Wieland, M., Hutter, K.: Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. A455, 1841–1874 (1999)CrossRefGoogle Scholar
  31. 31.
    Greve, R., Hutter, K: The motion of a granular avalanche in a convex and concave curved chute: Experiments and theoretical predictions. Philos. Trans. R. Soc. Lond. A342, 573–604 (1993)Google Scholar
  32. 32.
    Griault, V., Riviere, B., Wheeler, M.F.: A splitting method using discontinuous Galerkin for the transient incompressible Navier–Stokes equations. ESIAM: M2AN, 39(6), 1115–1147 (2005)Google Scholar
  33. 33.
    Grigoriyan, S.S., Ostoumov, A. V.: On the mechanics of the formation and collaps of mountainous slag heaps. (in Russian) Inst. Mekh. Moskov. Gos. Univ. Moscow. Report Nr 1724 (1975a)Google Scholar
  34. 34.
    Grigoriyan, S.S., Ostoumov, A. V.: Calculation of the parameters of the motion and the force action on an avalanche dike. (in Russian) Inst. Mekh. Moskov. Gos. Univ. Moscow. Report Nr 1695 (1975b)Google Scholar
  35. 35.
    Grigoriyan, S.S.: A new law of friction and mechanism for large-scale slag heaps and landslides (English translation in Soviet Phys. Dokl. 24, 110–111 (1979)Google Scholar
  36. 36.
    Harrison, J., Falcon, N.: The Saidmarreh Landslip southwest Iran. Geogr. J. 89, 42–47 (1937)CrossRefGoogle Scholar
  37. 37.
    Huber, A.: Schwallwellen in Seen als Folge von Felsstürzen, Mitteilung Nr. 47 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich (1980)Google Scholar
  38. 38.
    Hui, W.H.: The unified coordinates system in computational fluid mechanics. Commun. Comput. Phys. 2(4), 577–610 (2007)Google Scholar
  39. 39.
    Hui, W.H., Koudriakov, S.: Computation of the shallow water equations using the unified coordinates. SIAM, J. -Sci. Comput. 23(5) 1615–1654 (2002)Google Scholar
  40. 40.
    Hungr, O., McDougall, S.: Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978–992 (2009)CrossRefGoogle Scholar
  41. 41.
    Hutter, K., Koch, T.: Motion of a granular avalanche in an exponentially curved chute. Experiments and theoretical predictions. Philos. Trans. Royal. Soc. Lond., A 334, 93–138 (1991)Google Scholar
  42. 42.
    Hutter, K., Siegel, M., Savage, S.B., Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane. I. Theory Acta. Mech. 100, 37–68 (1993)CrossRefGoogle Scholar
  43. 43.
    Hutter, K., Wang, Y., Pudasaini, S.P.: The Savage-Hutter avalanche model. How far can it be pushed? Philos. Trans. R. Soc. A363, 1507–1528 (2005)Google Scholar
  44. 44.
    Hutter, K., Baillifard, O.: A continuum formulation of lava flows from fluid ejection to solid deposition. In: Hutter, K., Wu, T.T., Shu, Y.Ch. (eds.) From Waves in Complex Systems to Dynamics of Generalized Continua, pp. 219–283. World Scientific, Singapore (2011)Google Scholar
  45. 45.
    Iverson, R.M., Denlinger, R.P.: Flow of variable fluidized granular masses across three-dimensional terrain: 1 Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2004). doi: 10.1029/2000JB900329 CrossRefGoogle Scholar
  46. 46.
    Iverson, R.M., Logan, M., Denlinger, R.P.: Granular avalanches across three-dimensional terrain. 2. Experimental tests. J. Geophys. Res. 109 F01015, (2004). doi: 10.1029/2003JF00084
  47. 47.
    Kerswell, R.R.: Dam break with Coulomb friction: a model for granular slumping? Phys. Fluids, 17, 057101 (2005)Google Scholar
  48. 48.
    Klingbeil, E.: Tensorrechnung für Ingenieure (Hochschultaschenbücher) Bibliographisches Institut Mannheim (1966)Google Scholar
  49. 49.
    Koch, T.: Bewegung einer granularen Lawine auf einer geneigten und gekrümmten Fläche. Entwicklung und Anwendung eines theoretischen numerischen Verfahrens und dessen Überprüfung durch Laborexperimente. Ph.D. thesis. Technische Hochschule Darmstadt, 255 p (1994)Google Scholar
  50. 50.
    Kolymbas, D.: Behaviour of liquefied sand. Philos. Trans. R. Soc. Lond. A356, 2609–2622 (1998)Google Scholar
  51. 51.
    Kolymbas, D.: Liquefaction and cold volcanism. Acta Geotechnica (2014). doi: 10.1007/s11440-013-0268-x Google Scholar
  52. 52.
    Kuo, C.Y., Tai, Y.C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.F., Chang, K.J.: Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Eng. Geol. 104, 181–189 (2009)CrossRefGoogle Scholar
  53. 53.
    Kuo, C. Y., Tai, Y. C., Chen, C.C., Chang K. J., Siau, A, Y., Dong, J.J., Han, R.H., Shimamoto, T., Lee, C.T.: The landslide stage of the Hsiaolin catastrophe: simulation and validation. J. Geophys. Res. 116 F04007, (2011). doi: 10.1029/2010JF001921
  54. 54.
    Kuribayashi, E., Tatsuoka, F.: History of earthquake-induced soil liquefaction in Japan. Bull. of Public Works Research Institute Ed. Ministry of Construction, 38, Tokyo (1977)Google Scholar
  55. 55.
    Luca, I., Tai, Y-Ch., Kuo, Chih-Yu.: Non-Cartesian topography based avalanche equations and approximations of gravity driven ideal and viscous fluids. Math. Models Methods Appl. Sci. 19, 127–171 (2009)Google Scholar
  56. 56.
    Luca, I., Hutter, K., Tai, Yih-Chin, Kuo, Chih-Yu.: A hierarchy of avalanche models on arbitrary topography. Acta Mechanica 205, 121–149 (2009)Google Scholar
  57. 57.
    Luca, I., Tai, Y.-Ch., Kuo, Chih-Yu.: Rapid Geophysical Mass Flows down Arbitrary Topography, p. 287. Springer, Berlin (2016)Google Scholar
  58. 58.
    MacCormack, R.W.: An efficient explicit-implicit characteristic method for solving the compressible Navier–Stokes equations. SIAM-AMS Proc. 11, 130–155 (1978)Google Scholar
  59. 59.
    McDougall, S., Hungr. O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41, 1084–1097 (2004)Google Scholar
  60. 60.
    McDougall, S., Hungr. O.: Dynamic modelling of entrainment in rapid landslides. Can. Geotech. J. 42(5), 1437–1448 (2005)Google Scholar
  61. 61.
    McElwaine, J., Nishimura, K.: Ping-pong wall avalanche experiments. Ann. Glaciol. 32, 241–250 (2001)CrossRefGoogle Scholar
  62. 62.
    Mohr. O.: Welche Umstände bedingendie Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereins Deutscher Ingenieure, 24, 1524–1530, 1572–1577 (1914)Google Scholar
  63. 63.
    Jiang. G.S., Tadmor, E.: Non-oscillatiory schemes for multi-dimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 9(6), 1892–1917 (1997)Google Scholar
  64. 64.
    Morgemstern, N.: Submarine slumping and the initiation of turbidity currents, pp. 189–220. Proceedings of the International Res. Conference Marine Geotechnique, Univ Illinois (1967)Google Scholar
  65. 65.
    Pitman, B., Patra, A.K., Bauer, A.C., Nichita, C.C., Sheridan, M., Bursik, M.: Computing granular avalanches and landslides. Phys. Fluids 15, 3638–3646 (2003)CrossRefGoogle Scholar
  66. 66.
    Pitman, B., Lee, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. Lond. A363, 1573–1601 (2005)CrossRefGoogle Scholar
  67. 67.
    Pudasaini, S.P.: Dynamics of flow avalanches over curved and twisted channels: theory, numeric and experimental validation. Ph.D. Dissertation, Darmstadt University of Technology, Germany (2003)Google Scholar
  68. 68.
    Pudasaini, S.P., Wang, Y., Hutter, K.: Dynamics of avalanches along general mountain slopes. Ann. Glaciol. 38, 357–362 (2005)CrossRefGoogle Scholar
  69. 69.
    Pudasaini, S.P., Wang, Y., Hutter, K.: Modeling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)CrossRefGoogle Scholar
  70. 70.
    Pudasaini, S.P., Hutter, K.: Avalanche Dynamics—Dynamics of Rapid Flows of Dense Granular Avalanches, p. 602. Springer, Berlin (2007)Google Scholar
  71. 71.
    Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philos. Mag. Ser. 5(20), 469–481 (1885)CrossRefGoogle Scholar
  72. 72.
    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)CrossRefGoogle Scholar
  73. 73.
    Savage, S.B., Hutter, K.: Dynamics of avalanches of granular materials from ignition to run-out. Part I: Anal. Acta Mechanica 86, 201–233 (1991)Google Scholar
  74. 74.
    Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222, 391–407 (2007)CrossRefGoogle Scholar
  75. 75.
    Sino-Geotechnics, Research and Development Foundation, Taipei Taiwan (1996)Google Scholar
  76. 76.
    Sokolnikoff, I.S.: Tensor Analysis Theory and Applications. Wiley, New York (1951)Google Scholar
  77. 77.
    Straub, S.: Schnelles granulares Fliessen in subaerischen pyroclastischen Strömen. Ph.D. Dissertation Bayerische Julius Maximilians Universität, Würzburg, Germany (1994)Google Scholar
  78. 78.
    Tai, Y.-Ch., Wang, Y., Gray, J.M.N.T., Hutter, K: Methods of similitude in granular avalanche flows. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-region Thermal Engineering and Sciences, pp. 415–428. Springer, Berlin (1999)Google Scholar
  79. 79.
    Tai, Y.- Ch.: Dynamics of granular avalanches and their simulations with shock-capturing and front-tracking numerical schemes Ph. D. dissertation, Darmstadt University of Technology, Darmstadt, Germany (2000)Google Scholar
  80. 80.
    Tai, Y.-Ch., Gray, J.M.N.T., Hutter, K.: Dense granular avalanches: mathematical description and experimental validation. In. Balmforth, N.J., Provincale, A. (eds.) Geophysical Fluid Mechanics, pp 339–366. Springer, Berlin (2001)Google Scholar
  81. 81.
    Tai, Y-Ch., Kuo, Ch-Y: A new model of granular flows over general topography with erosion and deposition. Acta Mechanica 199, 71–96 (2008)CrossRefGoogle Scholar
  82. 82.
    Tai. Y.-Ch., Lin Y.C.: A focused view of the behavior of granular flows down a confined inclined chute into the horizontal runout zone. Phys. Fluids, 20, 123302, (2008). doi: 10.1063/1.3033490
  83. 83.
    Tai, Y-Ch., Kuo, Ch-Y, Hui, W.-H.: An alternative depth integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophys. Astrophys. Fluid Dyn. 106(6), 596–629 (2012)CrossRefGoogle Scholar
  84. 84.
    Voellmy, A.: Über die Zerstörkraft von Lawinen. Schweizerische Bauzeitung, 73, 159–162, 212–217, 246–249, 280–285 (1955)Google Scholar
  85. 85.
    Wang, Y., Hutter, K.: Comparisons of numerical methods with respect to convectively dominated problems. Int. J. Numer. Meth. Fluids 37, 721–745 (2001)CrossRefGoogle Scholar
  86. 86.
    Wang, Y., Hutter, K.: Granular material theories revisited. In: Balmforth, N.J., Provenzale, A. (eds.) Geomorphological Fluid Mechanics, pp. 79–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  87. 87.
    Wang, Y., Hutter, K., Pudasaini, S.: The Savage-Hutter theory: a system of partial differential equations for avalanche flows of snow, debris, and mud. Z. Angew. Math. Mech. 84(8), 507–527 (2004)CrossRefGoogle Scholar
  88. 88.
    Wieland, M., Gray, J.M.N.T., Hutter, K.: Channelized free surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.c/o Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations