Advertisement

Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow Flow Approximations

  • Kolumban HutterEmail author
  • Yongqi Wang
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

This chapter is devoted to the approximate determination of the velocity field in a shallow layer of ice or granular soil, treated as a non-Newtonian material flowing under the action of its own weight and assuming its velocity to be so small that Stokes flow can be assumed. Two limiting cases can be analyzed: (i) The deforming material flows on a steep slope (which is the case for creeping landslides or snow deposits on mountain topographies with inclination angles that are large). (ii) In the second case the inclination angles are small. Situation (ii) is apt to ice flow in large ice sheets such as Greenland and Antarctica, important in climate scenarios in a warming atmosphere. The two situations require different approximations. Perturbation schemes are derived in terms of a shallowness parameter in the two situations; applications are discussed under real world conditions. Applications focus on thermo-mechanical coupled plane ice sheet flows and to the Greenland ice sheet response to present day climate driving. In shallow, but still slow gravity driven free surface flows the acceleration terms in Newton’s law are no longer negligible.

Keywords

Viscous material spreading Thermo-mechanical coupling Stokes approximation Free surface shallow creeping flows Inclined and horizontal gravity driven creep flow. 

References

  1. 1.
    Ahlkrona, J., Kirchner, N., Lötsted, P.: A numerical study of scaling relations for non-Newtonian thin-film flows with applications in ice sheet modelling. Q. J. Appl. Math. 66(4), 417–435 (2013)CrossRefGoogle Scholar
  2. 2.
    Ahlkrona, J., Kirchner, N., Lötsted, P.: Accuracy of the zeroth and second order shallow ice approximation - numerical and theoretical results. Geosci. Model Dev. Discuss. 6, 2135–2152 (2013)CrossRefGoogle Scholar
  3. 3.
    Anonymous: Projet d’ Ecole: Detection et utilization des terrains instables. Rapport d’activité. Ecole Polytechnique Federal de Lausanne (1981, 1982, 1983)Google Scholar
  4. 4.
    Bamber, J.L., Laberry, R.L., Gogineni, S.P.: A new ice thickness and bed data set for the Greenland ice sheet. 1. Measurement, data reduction and errors. J. Geophys. Res. 106(D24), 33773–33780 (2001)CrossRefGoogle Scholar
  5. 5.
    Baral, D.: Asymptotic theories of large scale motion, temperature and moisture distributions in land based polythermal ice shields and in floating ice shelves - A critical review and new developments. Ph.D. theseis, Darmstadt University of Technology, Darmstadt, Germany (1999)Google Scholar
  6. 6.
    Baral, D.R., Hutter, K., Greve, R.: Asymtotic theories of large scale motion, temperature and moisture distributions in land based polythermal ice sheets. A critical review and new developments. Appl. Mech. Rev. 54(3), 215–256 (2001)CrossRefGoogle Scholar
  7. 7.
    Calov, R.: Das thermomechanische Verhalten des Grönländischen Eisschildes unter der Wirkung verschiedener Klimaszenarien – Antworten eines theoretisch-numerischen Modells. Ph.D. thesis, Technische Universität Darmstadt, Germany, 171 p (1993)Google Scholar
  8. 8.
    Calov, R., Hutter, K.: The thermomechanical response of the Greenland ice sheet to various climate scenarios. Clim. Dyn. 12(4), 243–260 (1996)CrossRefGoogle Scholar
  9. 9.
    Calov, R., Hutter, K.: Large scale motion and temperature distributions in land-based ice shields; the Greenland ice sheet in response to various climate scenarios. Arch. Mech. 49(50), 919–962 (1997)Google Scholar
  10. 10.
    Calov, R., Savvin, A., Greve, R., Hansen, I., Hutter, K.: Simulation of the Antarctic with a 3d polythermal ice sheet model - a support of the EPICA project. Ann. Glaciol. 27, 201–206 (1998)Google Scholar
  11. 11.
    Castro-Orgaz, O., Hutter, K., Giráldez, J.V., Hager, W.H.: Nonhydrostatic granular flow over 3D terrain: new Boussinesq-type gravity waves? J. Geophys. Res. - Earth Surf. 120(1), 1–28 (2015)CrossRefGoogle Scholar
  12. 12.
    Dahl-Jensen, D., et al.: Past temperatures directly from the Greenland ice sheet. Science 282(5387), 268–271 (1998)CrossRefGoogle Scholar
  13. 13.
    Dahl-Jensen, D., Gundestrup, N., Gogineni, S.P., Miller, H.: Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol. 37, 207–212 (2003)CrossRefGoogle Scholar
  14. 14.
    Dansgaard, W., Johnsen, S.J., Møller, J., Langway Jr., C.C.: One thousand centuries of climatic record from Camp century on the Greenland ice sheet. Science 166(3903), 377–381 (1969)CrossRefGoogle Scholar
  15. 15.
    Dansgaard, W., et al.: Evidence for general instability of past climate from a 250 kyr ice core record. Nature 364(6434), 218–220 (1993)CrossRefGoogle Scholar
  16. 16.
    de Q Robin, G.: Ice movement and temperature distributions in glaciers and ice sheets. J. Glaciol. 2(18), 523–532 (1955)CrossRefGoogle Scholar
  17. 17.
    Egholm, D.L., Knudsen, M.F., Clark, C.D., Leemann, J.E.: Modeling the flow of glaciers in steep terrains: the integrated second-order-shallow ice approximation (iSOSIA). J. Geophys. Res. 116, F022012 (2011)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Fowler, A.: On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dyn. 28, 99–140 (1984)CrossRefGoogle Scholar
  20. 20.
    Fowler, A.C., Larson, D.A.: On the flow of polythermal glaciers, I. Model and preliminary analysis. Proc. R. Soc. Lond. Ser. A 363, 217–242 (1978)CrossRefGoogle Scholar
  21. 21.
    Fowler, A.C., Larson, D.A.: On the flow of polythermal glaciers, II. Surface wave analysis. Proc. R. Soc. Lond. Ser. A 370, 155–171 (1980)CrossRefGoogle Scholar
  22. 22.
    Friedrichs, K.O.: On the derivation of the shallow water theory. Appendix to: the formation of breakers and bores, by J.J. Stoker. Commun. Pure Appl. Math. 1, 81–85 (1948)Google Scholar
  23. 23.
    Greve, R.: Thermomechanisches Verhalten polythermer Eisschilde – Theorie, Analytik, Numerik. Ph.D. thesis, Technische Universität Darmstadt, Deutschland. Berichte aus der Geo- Wissenschaft, Shaker Verlag, Aachen, Deutschland (1995)Google Scholar
  24. 24.
    Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. Lond. A355(1762), 924–974 (1997)Google Scholar
  25. 25.
    Greve, R.: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J. Clim. 10(5), 901–918 (1997)Google Scholar
  26. 26.
    Greve, R.: Glacial isostasy: models for the response of the eEarth to varying ice loads. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds.) Continuum Mechanics and Applications in Geophysics and the Environment, pp. 307–325. Springer, Berlin (2001)CrossRefGoogle Scholar
  27. 27.
    Greve, R., Blatter, H.: Dynamics of Ice Sheets and Glaciers, p. 287. Springer, Berlin (2009)CrossRefGoogle Scholar
  28. 28.
    Greve, R., Herzfeld, U.C.: Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Ann. Glaciol. 54(63), 209–220 (2013)CrossRefGoogle Scholar
  29. 29.
    Greve, R., Hutter, K.: Polythermal three-dimensional modeling of the Greenland ice sheet with varied geothermal heat flux. Ann. Glaciol. 21, 8–12 (1995)Google Scholar
  30. 30.
    Greve, R., Weis, M., Hutter, K.: Pareoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of summit: an approach by large scale modeling. Paleoclimates 2(2–3), 133–161 (1998)Google Scholar
  31. 31.
    Gundestrup, N.S., Hansen, B.L.: Bore-hole survey at Dye 3. South Greenland. J. Glaciol. 30(106), 282–288 (1984)Google Scholar
  32. 32.
    Gundestrup, N.S., Clausen, H.B., Hansen, B.L., Rand, J.: Camp century survey 1986. Cold Reg. Sci. Technol. 14(3), 281–288 (1987)CrossRefGoogle Scholar
  33. 33.
    Gundestrup, N.S., Dahl-Jensen, D., Hansen, B.L., Kelty, J.: Borehole survey at Camp century 1989. Cold Reg. Sci. Technol. 21(2), 187–193 (1993)CrossRefGoogle Scholar
  34. 34.
    Hansen, I., Greve, R., Hutter. K.: Application of a polythermal ice model to the Antarctic ice sheet. Steady-state solution and response to Milancovic’ cycles. In: Lee, Y., Halle, W. (eds.) Proceedings of Fifth International Symposium on Thermal Engineering and Sciences for Cold Regions. Ottawa, 19–22 May, pp. 89–96 (1996)Google Scholar
  35. 35.
    Herzfeld, U.C., Wallin, B.F., Leuschen, C.J., Plummer, J.: An algorithm for generalizing topography to grids while preserving subscale morphologic characteristics - creating a glacier bed DEM for Jacobshavn trough as low-solution input for dynamic ice-sheet models. Comput. Geosci. 37(11), 1793–1801 (2011)CrossRefGoogle Scholar
  36. 36.
    Herzfeld, U.C., Fasdtook, J., Greve, R., McDonald, B., Wallin, B.F., Chen, P.A.: On the influence of outlet glaciers in Greenland bed topography on results from dynamic ice sheet models. Ann. Glaciol. 53(60 Pt2), 281–293 (2012)CrossRefGoogle Scholar
  37. 37.
    Hutter, K.: The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. J. Glaciol. 25(95), 39–56 (1981)Google Scholar
  38. 38.
    Hutter, K.: A mathematical model of polythermal glaciers and ice sheets. Geophys. Astrophys. Fluid Dyn. 21, 201–224 (1982)CrossRefGoogle Scholar
  39. 39.
    Hutter, K.: Theoretical Glaciology. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, XXXII+510 p (1983)Google Scholar
  40. 40.
    Hutter, K. : Ice and snow mechanics, a challenge to theoretical and applied mechanics. In: Proceedings of the XVI-ICTAM Congress, North Holland Publishing Company, Copenhagen (1984)Google Scholar
  41. 41.
    Hutter, K.: Thermo-mechanically coupled ice sheet response: cold, polythermal, temperate. J. Glaciol. 39(131), 65–86 (1993)Google Scholar
  42. 42.
    Hutter, K., Castro-Orgaz, O.: Non-hydrostatic free surface flows: Saint Venant versus Boussinesq depth integrated dynamic equations for river and granular flows. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure. Springer, Berlin (2016)Google Scholar
  43. 43.
    Hutter, K., Vulliet, L.: Gravity driven slow creeping flow of a thermoviscous body at elevated temperature. J. Therm. Stress. 8, 99–138 (1985)CrossRefGoogle Scholar
  44. 44.
    Hutter, K., Yakowitz, S., Szidarovsky, F.: A numerical study of plane ice-sheet flow. J. Glaciol. 32(111), 139–160 (1986)Google Scholar
  45. 45.
    Hutter, K., Blatter, H., Funk, M.: A model of polythermal glaciers. J. Geophys. Res. 93(10B), 12205–12214 (1988)CrossRefGoogle Scholar
  46. 46.
    Huybrechts, P.: A 3D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim. Dyn. 5, 79–90 (1990)Google Scholar
  47. 47.
    Johnson, R.E., McMeeking, R.M.: Near surface flow in glaciers obeying Glen’s flow law. Quart. J. Mech. Appl. Math. 37, 273–291 (1984)CrossRefGoogle Scholar
  48. 48.
    Joughin, I., Smitj, B.E., Howat, I.M., Scambos, T., Moon, T.: Greenland flow variability from ice sheet-wide velocity mapping. J. Glaciol. 56(197), 415–430 (2010)CrossRefGoogle Scholar
  49. 49.
    Kirchner, N., Hutter, K., Jakobsson, M., Gyllencreutz, R.: Capabilities and limitations of numerical ice sheet models: a discussion for Earth scientists and modelers. Quat. Sci. Rev. 30(25–26), 3691–3704 (2011)CrossRefGoogle Scholar
  50. 50.
    Kuhle, M., Herterich, K., Calov, R.: On the ice age glaciation of the Tibetan highland and its transformation into a 3D model. GeoJournal 19(2), 201–206 (1989)CrossRefGoogle Scholar
  51. 51.
    LeMeur, E., Huybrechts, P.: A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Ann. Glaciol. 23, 309–317 (1996)Google Scholar
  52. 52.
    Morland, L.W.: Thermomechanical balances of ice sheet flows. J. Geophys. Astrophys. Fluid Dyn. 29(1–4), 237–266 (1984)CrossRefGoogle Scholar
  53. 53.
    Morland, L.W., Johnson, I.R.: Steady motion of ice sheets. J. Glaciol. 25(95), 229–246 (1980)Google Scholar
  54. 54.
    Morland, L.W., Johnson, I.R.: Effects of bed inclination and topography on steady ice sheets. J. Glaciol. 28(98), 71–90 (1982)Google Scholar
  55. 55.
    Morland, L.W., Smith, G.D.: Influence of non-uniform temperature distribution of the steady motion of ice sheets. J. Fluid Mech. 140, 113–133 (1984)CrossRefGoogle Scholar
  56. 56.
    Musase, T., McBirney, A.R.: Properties of some common igneous rocks and their melts at high temperatures. Geol. Soc. Am. Bull. 84(9), 3563–3592 (1973)Google Scholar
  57. 57.
    North Greenland Ice Core Project (NorthGRIP) Members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005), 147–151 (2004)Google Scholar
  58. 58.
    Richter, F.: Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit. Polynome und graphische Darstellungen. Stahleisen – Sonderberichte Heft 10. Verlag Stahleisen M.B.H. Düsseldorf (1983)Google Scholar
  59. 59.
    Rittmann, A.: Vulkane und ihre Tätigkeit, 2nd edn. Ferdinand Enke Verlag, Stuttgart (1960)Google Scholar
  60. 60.
    Sato, T.: Dynamics of the Antarctic ice sheet with coupled ice shelves. Ph.D. thesis, Division of Earth System Science, Graduate School of Environmental Science, Hokkaido University. 1–110 pp (2012)Google Scholar
  61. 61.
    Sato, T., Greve, R.: Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Ann. Glaciol. 53(60), 221–227 (2012)CrossRefGoogle Scholar
  62. 62.
    Schoof, C., Hindmarsh, R.C.A.: Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart. J. Mech. Appl. Math. 63, 73–114 (2010)CrossRefGoogle Scholar
  63. 63.
    Smith, G.D., Morland, L.W.: Viscous relations for the steady creep of polycrystalline ice. Cold Reg. Sci. Technol. 5, 141–150 (1980)CrossRefGoogle Scholar
  64. 64.
    Vulliet, L.: L’instabilité des pentes en fonction du temps. Ecole Polytechnique Fédérale de Lausanne (1986)Google Scholar
  65. 65.
    Weis, M.: Theory and finite element analysis of shallow ice shelves. Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany (2001)Google Scholar
  66. 66.
    Weis, M., Hutter, K., Calov, R.: 250.000 years in the history of the Greenland ice sheet. Ann. Glaciol. 23, 359–363 (1996)Google Scholar
  67. 67.
    Weis, M., Greve, R., Hutter, K.: Theory of shallow ice shelves. Contin. Mech. Thermodyn. 11(1), 15–50 (1999)CrossRefGoogle Scholar
  68. 68.
    Yakowitz, S., Hutter, K., Szidarowsky, F.: Elements of computational theory of glaciers. J. Comput. Phys. 66, 132–150 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.c/o Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations