Advertisement

How the Collapse of the Beef Sector in Post-Soviet Russia Displaced Competition for Ecosystem Services to the Brazilian Amazon

  • Florian SchierhornEmail author
  • Alex Kramer Gittelson
  • Daniel Müller
Chapter
Part of the Human-Environment Interactions book series (HUEN, volume 6)

Abstract

The collapse of the Russian livestock sector triggered widespread agricultural land abandonment in post-Soviet Russia. The beef industry declined in particular, and consequently, Russia became heavily dependent on beef imports, from Europe in the 1990s and from Brazil after 2002. Therefore, Russian demand substantially contributed to the growth of the Brazilian beef sector and fostered widespread agricultural land expansion and deforestation in the Brazilian Amazon. The beef trade from Brazil to Russia was associated with substantial environmental costs in terms of carbon emissions and loss of biodiversity. While the abandoned agricultural land in Russia has become an important terrestrial carbon sink that would be largely diminished by re-cultivation, we argue that increasing agricultural output through re-cultivation or the expansion of grazing within Russia may be desirable from a global perspective, if the high environmental costs of production elsewhere are taken into account.

Keywords

Land abandonment Deforestation Soybean Trade-off Carbon sink 

References

  1. Antonova, M., & Zeller, M. (2007). A time series analysis of the beef supply response in Russia: Implications for agricultural sector development policies. Joint IAAE-104th EAAE Seminar, Budapest, Hungary.Google Scholar
  2. Arima, E. Y., Richards, P., Walker, R., & Caldas, M. M. (2011). Statistical confirmation of indirect land use change in the Brazilian Amazon. Environmental Research Letters, 6, 024010.CrossRefGoogle Scholar
  3. Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., et al. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2, 182–185.CrossRefGoogle Scholar
  4. Barona, E., Ramankutty, N., Hyman, G., & Coomes, O. T. (2010). The role of pasture and soybean in deforestation of the Brazilian Amazon. Environmental Research Letters, 5, 024002.CrossRefGoogle Scholar
  5. Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., & Soenario, I. (2005). Exploring changes in world ruminant production systems. Agricultural Systems, 84, 121–153.CrossRefGoogle Scholar
  6. Bragina, E. V., Ives, A. R., Pidgeon, A. M., Kuemmerle, T., Baskin, L.M., & Gubar, Y.P., et al. (2015). Rapid declines of large mammal populations after the collapse of the Soviet Union. Conservation Biology, n/a-n/a.Google Scholar
  7. Caro, D., LoPresti, A., Davis, S. J., Bastianoni, S., & Caldeira, K. (2014). CH4 and N2O emissions embodied in international trade of meat. Environmental Research Letters, 9, 114005.CrossRefGoogle Scholar
  8. Cederberg, C., Persson, U. M., Neovius, K., Molander, S., & Clift, R. (2011). Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environmental Science and Technology, 45, 1773–1779.CrossRefGoogle Scholar
  9. Csaki, C., & Lerman, Z. (1992). Land reform and farm sector restructuring in the former Soviet Union and Russia. Aula, 7–22.Google Scholar
  10. Davis, S. J., Burney, J. A., Pongratz, J., & Caldeira, K. (2014). Methods for attributing land-use emissions to products. Carbon Management, 5, 233–245.CrossRefGoogle Scholar
  11. Dyck, J. H., & Nelson, K. E. (2003). Structure of the global markets for meat. United States Department of Agriculture, Economic Research Service.Google Scholar
  12. FAO 2014. FAOSTAT data. In: Food and Agriculture Organization of the United Nations.Google Scholar
  13. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.CrossRefGoogle Scholar
  14. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853.CrossRefGoogle Scholar
  15. Hocquette, J.-F., & Chatellier, V. (2011). Prospects for the European beef sector over the next 30 years. Animal Frontiers, 1, 20–28.CrossRefGoogle Scholar
  16. Jin, H. J., Skripnitchenko, A., & Koo, W. W. (2004). The effects of the BSE outbreak in the United States on the beef and cattle industry. Center for Agricultural Policy and Trade Studies, Department of Agribusiness and Applied Economics, North Dakota State University.Google Scholar
  17. Kaimowitz, D., Mertens, B., Wunder, S., & Pacheco, P. (2004). Hamburger connection fuels Amazon destruction. Bangor, Indonesia: Center for International Forest Research.Google Scholar
  18. Karstensen, J., Peters, G. P., & Andrew, R. M. (2013). Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environmental Research Letters, 8, 024005.CrossRefGoogle Scholar
  19. Kurganova, I., Lopes de Gerenyu, V., Six, J., & Kuzyakov, Y. (2014). Carbon cost of collective farming collapse in Russia. Global Change Biology, 20, 938–947.CrossRefGoogle Scholar
  20. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1626.CrossRefGoogle Scholar
  21. Lambin, E. F., Gibbs, H. K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt, P., et al. (2013). Estimating the world’s potentially available cropland using a bottom-up approach. Global Environmental Change, 23, 892–901.CrossRefGoogle Scholar
  22. Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. In Proceedings of the National Academy of Sciences, Vol. 108, pp. 3465–3472.Google Scholar
  23. Lathuillière, M. J., Johnson, M. S., Galford, G. L., & Couto, E. G. (2014). Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environmental Research Letters, 9, 074001.CrossRefGoogle Scholar
  24. Liefert, W. M. (2002). Comparative (dis?) advantage in Russian agriculture. American Journal of Agricultural Economics, 762–767.Google Scholar
  25. Liefert, W. (2004). Food security in Russia: Economic growth and rising incomes are reducing insecurity. Food Security Assessment/GFA-15/May.Google Scholar
  26. Liefert, W., Liefert, O., Vocke, G., & Allen, E. (2010). Former Soviet Union region to play larger role in meeting world wheat needs. Amber Waves: U.S. Department of Agriculture, Economic Research Service.Google Scholar
  27. Liefert, W. M., & Liefert, O. (2012). Russian agriculture during transition: Performance, global impact, and outlook. Applied Economic Perspectives and Policy, 34, 37–75.CrossRefGoogle Scholar
  28. Lioubimtseva, E., & Henebry, G. (2012). Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world? Frontiers of Earth Science, 6, 157–166.CrossRefGoogle Scholar
  29. Macedo, M. N., DeFries, R. S., Morton, D. C., Stickler, C. M., Galford, G. L., & Shimabukuro, Y. E. (2012). Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. In Proceedings of the National Academy of Sciences, Vol. 109, pp. 1341–1346.Google Scholar
  30. Martin, N. (2014). What is the way forward for protein supply? The European perspective. OCL, 21, D403.CrossRefGoogle Scholar
  31. McAlpine, C. A., Etter, A., Fearnside, P. M., Seabrook, L., & Laurance, W. F. (2009). Increasing world consumption of beef as a driver of regional and global change: A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environmental Change, 19, 21–33.CrossRefGoogle Scholar
  32. Meyfroidt, P., Lambin, E. F., Erb, K.-H., & Hertel, T. W. (2013). Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5, 438–444.CrossRefGoogle Scholar
  33. Millen, D. D., & Arrigoni, M. D. B. (2013). Drivers of change in animal protein production systems: Changes from ‘traditional’ to ‘modern’ beef cattle production systems in Brazil. Animal Frontiers, 3, 56–60.CrossRefGoogle Scholar
  34. Moreira, F., & Russo, D. (2007). Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22, 1461–1476.CrossRefGoogle Scholar
  35. Nepstad, D. C. (2005). Governing the world’s forests. Conserving Biodiversity, 37–52.Google Scholar
  36. Nepstad, D. C., Stickler, C. M., & Almeida, O. T. (2006). Globalization of the amazon soy and beef industries: Opportunities for conservation. Conservation Biology, 20, 1595–1603.CrossRefGoogle Scholar
  37. Osborne, S., & Trueblood, M. A. (2002). Agricultural productivity and efficiency in Russia and Ukraine. Agricultural Economic Report.Google Scholar
  38. Pacheco, P. (2012). Soybean and oil palm expansion in South America: A review of main trends and implications. CIFOR Working Paper.Google Scholar
  39. Paulino, P., & Duarte, M. (2014). Brazilian beef production. Beef cattle production and trade, Vol. 107.Google Scholar
  40. Penov, I. (2004). The use of irrigation water in Bulgaria’s Plovdiv region during transition. Environmental Management, 34, 304–313.CrossRefGoogle Scholar
  41. Peterson, D. J. (1993). Troubled lands: The legacy of Soviet environmental destruction. Westview Press Inc.Google Scholar
  42. Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Global Change Biology, 17, 2415–2427.CrossRefGoogle Scholar
  43. Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M., & Radeloff, V. C. (2013). Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy, 30, 873–884.CrossRefGoogle Scholar
  44. Regmi, A., Deepak, M., Seale Jr, J. L., & Bernstein, J. (2001). Cross-country analysis of food consumption patterns. Changing structure of global food consumption and trade (pp. 14–22).Google Scholar
  45. Rey Benayas, J. (2007). Abandonment of agricultural land: An overview of drivers and consequences. CAB reviews: Perspectives in agriculture, veterinary science, nutrition and natural resources, Vol. 2.Google Scholar
  46. Richards, P. D., Myers, R. J., Swinton, S. M., & Walker, R. T. (2012). Exchange rates, soybean supply response, and deforestation in South America. Global Environmental Change, 22, 454–462.CrossRefGoogle Scholar
  47. ROSSTAT 2014. Regions of Russia. Socio-economic Indicators. Russian Federal Service of State Statistics, Moscow, Russia. Available from: http://www.gks.ru (in Russian).
  48. Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13, 816–837.CrossRefGoogle Scholar
  49. Schierhorn, F., Faramarzi, M., Prishchepov, A. V., Koch, F. J., & Müller, D. (2014a). Quantifying yield gaps in wheat production in Russia. Environmental Research Letters, 9, 084017.CrossRefGoogle Scholar
  50. Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A. V., Kuemmerle, T., & Balmann, A. (2013). Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochemical Cycles, 27, 1175–1185.CrossRefGoogle Scholar
  51. Schierhorn, F., Müller, D., Prishchepov, A. V., Faramarzi, M., & Balmann, A. (2014b). The potential of Russia to increase its wheat production through cropland expansion and intensification. Global Food Security, 3, 133–141.CrossRefGoogle Scholar
  52. Sedik, D. J., Sotnikov, S., & Wiesmann, D. (2003). Food security in the Russian Federation. Food & Agriculture Org.Google Scholar
  53. Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., & Crevoisier, C. (2009). Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochemical Cycles, Vol. 23, GB2022.Google Scholar
  54. Sieber, A., Kuemmerle, T., Prishchepov, A. V., Wendland, K. J., Baumann, M., Radeloff, V. C., et al. (2013). Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 133, 38–51.CrossRefGoogle Scholar
  55. Simon, S., & Wiegmann, K. (2009). Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries. Biomass and Bioenergy, 33, 603–609.CrossRefGoogle Scholar
  56. Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., & Rounsevell, M., et al. (2010). Competition for land.Google Scholar
  57. Staudigel, M. (2011). How (much) do food prices contribute to obesity in Russia? Economics & Human Biology, 9, 133–147.CrossRefGoogle Scholar
  58. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & Haan, C. D. (2006). Livestock’s long shadow: Environmental issues and options. Rome: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  59. Stillman, S. (2006). Health and nutrition in Eastern Europe and the former Soviet Union during the decade of transition: A review of the literature. Economics & Human Biology, 4, 104–146.CrossRefGoogle Scholar
  60. Thomé, K. M., Vieira, L. M., & dos Santos, A. C. (2012). International marketing channels for Brazilian beef: Comparison between Russia and the United Kingdom. Journal of East-West Business, 18, 301–320.CrossRefGoogle Scholar
  61. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59.CrossRefGoogle Scholar
  62. USDA. (2014). Production, supply and distribution online. Washington DC, USA: US Department of Agriculture, Foreign Agricultural Service.Google Scholar
  63. Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., et al. (2014). The future of food demand: understanding differences in global economic models. Agricultural Economics, 45, 51–67.CrossRefGoogle Scholar
  64. Vieira, L. M., & Traill, W. B. (2008). Trust and governance of global value chains: The case of a Brazilian beef processor. British Food Journal, 110, 460–473.CrossRefGoogle Scholar
  65. Vuichard, N., Ciais, P., Belelli, L., Smith, P., & Valentini, R. (2008). Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Global Biogeochemical Cycles, 22.Google Scholar
  66. Vuichard, N., Ciais, P., & Wolf, A. (2009). Soil carbon sequestration or biofuel production: New land-use opportunities for mitigating climate over abandoned Soviet farmlands. Environmental Science and Technology, 43, 8678–8683.CrossRefGoogle Scholar
  67. Wegren, S. K. (1992). Dilemmas of agrarian reform in the Soviet Union. Europe-Asia Studies, 44, 3–36.Google Scholar
  68. Wegren, S. K. (2002). Russian agrarian policy under Putin. Post-Soviet Geography & Economics, 43, 26–40.Google Scholar
  69. Wegren, S. (2011). Food security and Russia’s 2010 drought. Eurasian Geography and Economics, 52, 140–156.CrossRefGoogle Scholar
  70. Wegren, S. K. (2014). Human capital and Russia’s agricultural future. Post-Communist Economies, 26, 537–554.CrossRefGoogle Scholar
  71. Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103, 621–638.CrossRefGoogle Scholar
  72. Zaks, D. P. M., Barford, C. C., Ramankutty, N., & Foley, J. A. (2009). Producer and consumer responsibility for greenhouse gas emissions from agricultural production—A perspective from the Brazilian Amazon. Environmental Research Letters, 4, 044010.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Florian Schierhorn
    • 1
    Email author
  • Alex Kramer Gittelson
    • 2
  • Daniel Müller
    • 1
    • 3
  1. 1.Leibniz Institute of Agricultural Development in Transition Economies (IAMO)HalleGermany
  2. 2.Fulbright Research ScholarshipInternational Institute of EducationNew YorkUSA
  3. 3.Department of GeographyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations