Curve Extraction by Geodesics Fusion: Application to Polymer Reptation Analysis

  • Somia RahmounEmail author
  • Fabrice Mairesse
  • Hiroshi Uji-i
  • Johan Hofkens
  • Tadeusz Sliwa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9680)


In the molecular field, researchers analyze dynamics of polymers by microscopy: several measurements such as length and curvature are performed in their studies. To achieve correct analysis they need to extract the curve representing as good as possible the observed polymer shape which is a grayscale thick curve with noise and blur. We propose, in this paper, a method to extract such a curve. A polymer chain moves in a snake-like fashion (Reptation): it can self-intersect and form several complex geometries. To efficiently extract the different geometries, we generate the curve by computing a piecewise centerline browsing the shape by geodesics: each shape gives a set of separate geodesics. By fusion, we obtain the complete curve traveling the shape. To keep the correct curve orientation, the fusion is considered as a graph traversal problem. Promising results show that the extracted curve properly represents the shape and can be used for polymer study.


Shape analysis Grayscale curves Morphological operations Shape extraction Geodesics fusion Molecular image analysis 


  1. 1.
    Dietenbeck, T., Alessandrini, M., Barbosa, D., Dhooge, J., Friboulet, D., Bernard, O.: Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Med. Image Anal. 16(2), 386–401 (2012)CrossRefGoogle Scholar
  2. 2.
    Edmonds, J.: Maximum matching and a polyhedron with (0,1) vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Edmonds, J., Johnson, E.: Matching, euler tours and the chinese postman. Math. Program. 5(1), 88–124 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using MATLAB. Pearson Education India, London (2004)Google Scholar
  5. 5.
    Keshavarz, M., Engelkamp, H., Xu, J., Braeken, E., Otten, M.B., Uji-i, H., Schwartz, E., Koepf, M., Vananroye, A., Vermant, J., et al.: Nanoscale study of polymer dynamics. ACS Nano 10, 1434–1441 (2015)CrossRefGoogle Scholar
  6. 6.
    Kuhn, J.R., Pollard, T.D.: Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 88(2), 1387–1402 (2005)CrossRefGoogle Scholar
  7. 7.
    Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121(1), 39–49 (1981)CrossRefGoogle Scholar
  8. 8.
    Leonhard, E.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741)Google Scholar
  9. 9.
    Muls, B., Uji-i, H., Melnikov, S., Moussa, A., Verheijen, W., Soumillion, J.P., Josemon, J., Müllen, K., Hofkens, J.: Direct measurement of the end-to-end distance of individual polyfluorene polymer chains. ChemPhysChem 6(11), 2286–2294 (2005)CrossRefGoogle Scholar
  10. 10.
    Perkins, T.T., Smith, D., Chu, S., et al.: Relaxation of a single DNA molecule observed by optical microscopy. Science 264(5160), 822–826 (1994)CrossRefGoogle Scholar
  11. 11.
    Peyré, G., Cohen, L.: Heuristically driven front propagation for geodesic paths extraction. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 173–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)CrossRefGoogle Scholar
  13. 13.
    Rivetti, C.: A simple and optimized length estimator for digitized DNA contours. Cytometry Part A 75(10), 854–861 (2009)CrossRefGoogle Scholar
  14. 14.
    Romanowska, M., Hinsch, H., Kirchgeßner, N., Giesen, M., Degawa, M., Hoffmann, B., Frey, E., Merkel, R.: Direct observation of the tube model in f-actin solutions: tube dimensions and curvatures. EPL (Europhys. Lett.) 86(2), 26003 (2009)CrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognit. 1(1), 33–61 (1968)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sanchez, H., Wyman, C.: Sfmetrics: an analysis tool for scanning force microscopy images of biomolecules. BMC Bioinform. 16(1), 1 (2015)CrossRefGoogle Scholar
  17. 17.
    Woll, D., Braeken, E., Deres, A., De Schryver, F.C., Uji-i, H., Hofkens, J.: Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 38, 313–328 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhou, X.S., Comaniciu, D., Gupta, A.: An information fusion framework for robust shape tracking. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 115–129 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Somia Rahmoun
    • 1
    Email author
  • Fabrice Mairesse
    • 1
  • Hiroshi Uji-i
    • 2
  • Johan Hofkens
    • 2
  • Tadeusz Sliwa
    • 1
  1. 1.Le2i - UMR CNRS 6306, Université de Bourgogne Franche-ComtéAuxerre CedexFrance
  2. 2.Department of ChemistryKatholieke University of LeuvenHeverleeBelgium

Personalised recommendations