eNetEditor: A Platform-Independent Tool for Rapid Creation of Urban Traffic Scenarios and for the Optimization of Their Energy Supply Infrastructure

  • Tamás KurczveilEmail author
  • Pablo Álvarez López
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


The increasing mobility and transport demand and the sinking global supply of fossil energy carriers will eventually cause a growing trend toward alternative drive concepts and the development of corresponding energy supply infrastructures. These emerging solutions and their interaction with the prevailing traffic will need to be evaluated for their optimal integration. SUMO is a preferred tool when it comes to evaluating measures in urban traffic behavior. When using SUMO, however, the creation of corresponding scenarios is accompanied by challenges in network creation and corrections, traffic demand generation and calibration. This paper presents the newly developed tool eNetEditor, which allows users the rapid prototyping of custom and calibrated traffic scenarios and their evaluation in regard to energy consumption.


Network generation Traffic assignment and calibration Energy consumption 


  1. 1.
    statista. Anzahl der Neuzulassungen von Personenkraftwagen in Deutschland im Jahr 2014 nach Marken., Rev. 02. February 2015
  2. 2.
    statista. Anzahl der Neuzulassungen von Elektroautos in Deutschland in den Jahren 2003 bis 2014., Rev. 02. February 2015
  3. 3.
    statista. Anzahl der Tankstellen in Deutschland von 1950 bis 2014., Rev. 02. February 2015
  4. 4.
    BDEW. BDEW-Erhebung Elektromobilität: Zuwachs bei öffentlichen Lademöglichkeiten., Rev. 02. February 2015
  5. 5.
    Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO - Simulation of Urban MObility. Int J Adv Syst Meas 5(3 and 4):128–138Google Scholar
  6. 6.
    Kurczveil T, López PA, Schnieder E (2014) Implementation of an energy model and a charging infrastructure in SUMO. In: Simulation of urban mobility. Lecture notes in computer science, pp 33–43Google Scholar
  7. 7.
    Schnieder L, Stein C, Schielke AG, Pfundmayr M (2011) Effektives Terminologiemanagement als Grundlage methodischer Entwicklung automatisierungstechnischer Systeme. at - automatisierungstechnik 59(1):62–70CrossRefGoogle Scholar
  8. 8.
    Schnieder L (2010) Formalisierte Terminologien technischer Systeme und ihrer Zuverlässigkeit. Dissertation, Technische Universität BraunschweigGoogle Scholar
  9. 9.
    German Aeroscace Center. Simulation/Traffic Lights., Rev. 30. December 2014, 14:24
  10. 10.
    Wegener A, Piorkowski M, Raya M, Hellbrück H, Fischer S, Hubaux J-P (2008) TraCI: an interface for coupling road traffic and network simulators. In: CNS ’08 - 11th communications and networking simulation symposium, OttawaGoogle Scholar
  11. 11.
    Nguyen T, Fullerton M, Krajzewicz D, Mai ST (2014) DFROUTER - route estimate method based on detector data. In: SUMO2014 - modeling mobility with open data, BerlinGoogle Scholar
  12. 12.
    Papaleontiou LG (2008) High-level traffic modelling and generation. Master thesis, University of Cyprus, NikosiaGoogle Scholar
  13. 13.
    Gawron C (1998) Simulation-based traffic assignment - computing user equilibria in large street networks. Ph.D. dissertation, University of Köln, CologneGoogle Scholar
  14. 14.
    Flötteröd G, Bierlaire M, Nagel K (2011) Bayesian demand calibration for dynamic traffic simulations. Transp Sci 45(4):541–561CrossRefGoogle Scholar
  15. 15.
    Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS). FGSV Verlag GmbH, Köln, 2009Google Scholar
  16. 16.
    Behrisch M, Krajzewicz D, Wang Y-P (2008) Comparing performance and quality of traffic assignment techniques for microscopic road traffic simulations. In: DTA2008 international symposium on dynamic traffic assignment, LeuvenGoogle Scholar
  17. 17.
    Stadt Braunschweig, WVI GmbH. Verkehrsmengen im Werktagsverkehr Mo – Fr in [Kfz/24h] - Querschnittswerte. Stadt Braunschweig, Braunschweig, 2009Google Scholar
  18. 18.
    HDEI/BCEI Working Group (2012) Fleet management system standard description. HDEI/BCEI Working Group, Version 03Google Scholar
  19. 19.
    Hodgson MJ (1990) A flow capturing location-allocation model. Geogr Anal 22(3):270–279CrossRefGoogle Scholar
  20. 20.
    Berman O, Larson RC, Fouska N (1992) Optimal location of discretionary service facilities. Transp Sci 26:201–211CrossRefGoogle Scholar
  21. 21.
    Kuby M, Lim S (2005) The flow-refueling location problem for alternative-fuel vehicle. Socio-Econ Plan Sci 39(2):125–145CrossRefGoogle Scholar
  22. 22.
    Meins J, Graffam C (2011) Induktive Energieübertragung für Elektrobusse nutzen - Ein Mosaikstein in der Elektromobilität wird in Braunschweig erprobt. Der Nahverkehr, 9/2011, 18–20, AlbaGoogle Scholar
  23. 23.
    Kurczveil T, Schnieder E (2014) Measurement evaluations for the arrangement of an inductive charging infrastructure for public transport in Braunschweig (Messdatenauswertung für die Auslegung einer induktiven Ladeinfrastruktur für den öffentlichen Personennahverkehr in Braunschweig). In: AAET 2014 - Automatisierungssysteme. Assistenzsysteme und eingebettete Systeme für Transportmittel, BraunschweigGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität BraunschweigInstitut für Verkehrssicherheit und AutomatisierungstechnikBraunschweigGermany

Personalised recommendations