A Comparison of Stochastic and Fuzzy Orderings

  • Alexander Lepskiy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 450)


There are many applications where the comparison of histograms (discrete random variables, fuzzy set on discrete universal set) is required with the help of relationship of type “more-less”. There are many approaches to solving this problem. The relations between some popular stochastic and fuzzy orderings are investigated in the article. The simple formulas for calculating the number of comparisons obtained, as well as established relationships between the various comparisons. The new approach for comparison of histogram is proposed in this paper too. This approach is based on the calculation of minimum directional transform of one histogram in another histogram.


Stochastic ordering Fuzzy ordering Minimal transform 


  1. 1.
    Navarro, J., Rubio, R.: Comparisons of coherent systems using stochastic precedence. Test 19(3), 469–486 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Stochastic Orders in Reliability and Risk. Lecture Notes in Statistics, vol. 208. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Kottas, A.: Bayesian semiparametric modeling for stochastic precedence with applications in epidemiology and survival analysis. Lifetime Data Anal. 17, 135–155 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bawa, V.S.: Optimal rules for ordering uncertain prospects. J. Financ. Econ. 2(1), 95–121 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shorrocks, A.F.: Ranking income distributions. Economica 50, 3–17 (1983)CrossRefGoogle Scholar
  6. 6.
    Rothschild, M., Stiglitz, J.E.: Some further results on the measurement of inequality. J. Econ. Theory 6, 188–204 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sen, A.K.: On Economic Inequality. Oxford University Press, Oxford (1973)CrossRefGoogle Scholar
  8. 8.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Baas, S.M., Kwakernaak, H.: Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatic 13, 47–58 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, X., Ruan, D., Kerre, E.E.: Mathematics of Fuzziness—Basic Issues. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Aiche, F., Dubois, D.: An Extension of Stochastic Dominance to Fuzzy Random Variables. Lecture Notes in Computer Science, vol. 6178, pp. 159–168. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Piriyakumar, J.E.L., Renganathan, N.: Stochastic orderings of fuzzy random variables. Inform. Manag. Scien. 12(4), 29–40 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lepskiy, A.: On the Stability of Comparing Histograms with Help of Probabilistic Methods. Procedia Computer Science, vol. 31, pp. 597–605. Elsevier, Amsterdam (2014)Google Scholar
  15. 15.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth movers distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ferson, S., Tucker, W.: Sensitivity analysis using probability bounding. Reliab. Eng. Syst. Saf. 91(10–11), 1435–1442 (2006)CrossRefGoogle Scholar
  17. 17.
    Montes, I., Miranda, E., Montes, S.: Stochastic Dominance with Imprecise Information. Comp. Stat. Data Anal. 71, 868–886 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Boland, P.J., Singh, H., Cukic, B.: The stochastic precedence ordering with applications in sampling and testing. J. Appl. Prob. 41, 73–82 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    De Schuymer, B., De Meyer, H., De Baets, B., Jenei, S.: On the cycle-transitivity of the dice model. Theor. Decis. 54(3), 261–285 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Arcones, M.A., Kvam, P.H., Samaniego, F.J.: Nonparametric estimation of a distribution subject to a stochastic precedence constraint. J. Am. Stat. Assoc. 97(457), 170–182 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Adamo, J.M.: Fuzzy decision trees. Fuzzy Sets Syst. 4, 207–219 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yager, R.R.: A procedure for ordering fuzzy sets of the unit interval. Inf. Sci. 24, 143161 (1981)Google Scholar
  23. 23.
    Kerre, E.: The Use of Fuzzy Set Theory in Electrocardiological Diagnostics. In: Gupta, M., Sanchez, E. (eds.) Approximate reasoning in decision-analysis, pp. 277–282. North-Holland Publishing Company, Amsterdam (1982)Google Scholar
  24. 24.
    Kantorovich, L.: On the Translocation of Masses. C.R. (Doklady). Acad. Sci. URSS (N.S.) 37, 199–201 (1942)Google Scholar
  25. 25.
    Bickel, P.J., Freedman, D.A.: Some asymptotic theory for the bootstrap. Ann. Stat. 9, 1196–1217 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Higher School of EconomicsMoscowRussia

Personalised recommendations