Multiagent Model for Agile Context Inference Based on Articial Immune Systems and Sparse Distributed Representations

  • Radu-Casian Mihailescu
  • Paul Davidsson
  • Jan Persson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9571)


The ubiquity of sensor infrastructures in urban environments poses new challenges in managing the vast amount of data being generated and even more importantly, deriving insights that are relevant and actionable to its users and stakeholders. We argue that understanding the context in which people and things are connected and interacting is of key importance to this end. In this position paper, we present ongoing work in the design of a multiagent model based on immunity theory concepts with the scope of enhancing sensor-driven architectures with context-aware capabilities. We aim to demonstrate our approach in a real-world scenario for processing streams of sensor data in a smart building.


Artificial Immune System Sensor Reading Context Pattern Smart Building Context Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cheng, H.: Sparse Representation, Modeling and Learning in Visual Recognition. Springer, London (2015)CrossRefMATHGoogle Scholar
  2. 2.
    Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: improving healthcare delivery in geriatric residences. IEEE Intell. Syst. 23(2), 19–25 (2008)CrossRefGoogle Scholar
  3. 3.
    Dasgupta, D., Senhua, Y., Nino, F.: Recent advances in artificial immune systems: models and applications. Appl. Soft Comput. 11(2), 1574–1587 (2011)CrossRefGoogle Scholar
  4. 4.
    Davidsson, P., Friberger, M.G., Holmgren, J., Jacobsson, A., Persson, J.A.: Agreement technologies for supporting the planning and execution of transports. Agreement Technologies. Law, Governance and Technology Series, vol. 8, pp. 533–547. Springer, The Netherlands (2013)CrossRefGoogle Scholar
  5. 5.
    De Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer Science, London (2002)MATHGoogle Scholar
  6. 6.
    de Paula, F.S., de Castro, L.N., de Geus, P.L.: An intrusion detection system using ideas from the immune system. In: Proceeding of IEEE Congress on Evolutionary Computation (CEC), vol. 1, pp. 1059–1066 (2004)Google Scholar
  7. 7.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  8. 8.
    Fonteles, A.S., Neto, B.J.A., Maia, M., Viana, W., Andrade, R.M.C.: An adaptive context acquisition framework to support mobile spatial and context-aware applications. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 100–116. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Gadi, M.F.A., Wang, X., do Lago, A.P.: Credit card fraud detection with artificial immune system. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 119–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    González, F.A., Dasgupta, D.: Anomaly detection using real-valued negative selection. Genet. Program. Evolvable Mach. 4(4), 383–403 (2003)CrossRefGoogle Scholar
  11. 11.
    Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evol. Comput. 8(4), 443–473 (2000)CrossRefGoogle Scholar
  12. 12.
    Kim, J., Bentley, P.J.: An evaluation of negative selection in an artificial immune system for network intrusion detection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1330–1337 (2001)Google Scholar
  13. 13.
    Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Nat. Comput. 6(4), 413–466 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensible, self contained, layered approach to context acquisition. In: Proceedings of the Third International Workshop on Middleware for Pervasive Mobile and Embedded Computing (M-MPAC 2011), pp. 6:1–6:7. ACM (2011)Google Scholar
  15. 15.
    Mihailescu, R.-C., Klusch, M., Ossowski, S.: e COOP: privacy-preserving dynamic coalition formation for power regulation in the smart grid. In: Chesñevar, C.I., Onaindia, E., Ossowski, S., Vouros, G. (eds.) AT 2013. LNCS, vol. 8068, pp. 19–31. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Nossal, G.J.: Negative selection of lymphocytes. Cell 76(2), 229–239 (1994)CrossRefGoogle Scholar
  17. 17.
    Woolridge, M.: Introduction to Multiagent Systems, 2nd edn. Wiley, New York (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Radu-Casian Mihailescu
    • 1
    • 2
  • Paul Davidsson
    • 1
    • 2
  • Jan Persson
    • 1
    • 2
  1. 1.School of TechnologyMalmö UniversityMalmöSweden
  2. 2.Internet of Things and People Research CenterMalmöSweden

Personalised recommendations