Customized Document Research by a Stigmergic Approach Using Agents and Artifacts

  • Zina El GuedriaEmail author
  • Laurent Vercouter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9571)


Document research in a digital corpus can be considered as a browsing process driven by some information needs. Such browses requires the use of traditional information retrieval tools to select relevant documents based on a query. But they can be improved by the use of customization and adaptation mechanisms in order to refine the representation of information needs. Several factors are useful to influence this customization: user profiles, browsing profiles, semantic proximity of documents, recommendations from other similar users, ... We propose in this article to treat this diversity of influence by a multiagent system interacting with a shared environment representing the users navigation. We follow a stigmergic approach in which the agents implement different customization factors and modify their shared environment to influence the representation of users needs and the browsing. This multiagent system has been implemented using an artifact layer for the environment.


Customized document research Agent and artifact Stigmergic approach Information need 



The work carried out this article receives funding from the Grand Réseau de Recherche: Logistique, Mobilité, Numérique Haute-Normandie Region (PlaIR 2.0 project 2013-2016).


  1. 1.
    Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., Unruh, A.: Active information gathering in infosleuthTM. Int. J. Coop. Inf. Syst. 9(01n02), 3–27 (2000)CrossRefGoogle Scholar
  2. 2.
    Côté, M., Troudi, N.: NetSA: Une Architecture Multiagent pour la Recherche sur Internet. Expertise Informatique 3(3) (1998)Google Scholar
  3. 3.
    Chaib-draa, B., Jarras, I., Moulin, B.: Systèmes multiagents: Principes généraux et applications. Edition Hermès (2001)Google Scholar
  4. 4.
    Bilel, E.: SARIPOD: Système multiagent de Recherche Intelligente POssibiliste de Documents Web. Thèse de doctorat en informatique. Université de Toulouse, Toulouse (France) (2009)Google Scholar
  5. 5.
    Institut du Droit International des Transports. Site.
  6. 6.
    Sieg A., Mobasher, B., Lytinen, S., Burke, R.: Using concept hierarchies to enhance user queries in web-based information retrieval. In: Artificial Intelligence and Applications (AIA) (2004)Google Scholar
  7. 7.
    Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelligent agents. IEEE Expert 11, 36–46 (1996)CrossRefGoogle Scholar
  8. 8.
    Grey, D.J., Dunne, G., Ferguson, RI.: A mobile agent architecture for searching the WWW. In: Proceedings of Workshop on Agents in Industry, 4th International Conference of Autonomous Agents, Barcelona (2000)Google Scholar
  9. 9.
    Lemouzy, S.: Systèmes interactifs auto-adaptatifs par systèmes multiagents auto-organisateurs: application à la personnalisation de l’accès à l’information. Thèse de doctorat en informatique. Université Paul Sabatier - Toulouse III, Toulouse (France) (2011)Google Scholar
  10. 10.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manage. 36(2), 207–227 (2000)CrossRefGoogle Scholar
  11. 11.
    Spink, A., Jansen, B.: Web Search: Public Searching of the Web. Kluwer Academic Publishers, Netherlands (2004)zbMATHGoogle Scholar
  12. 12.
    Leake, D.B., Scherle, R.: Towards context-based search engine selection. In: Paper Presented at the International Conference on Intelligent User Interfaces, Santa Fe, New Mexico, United States, 14–17 January 2001Google Scholar
  13. 13.
    Liu, F., Yu, C., Meng, W.: Personalized web search for improving retrieval effectiveness. IEEE Trans. Knowl. Data Eng. 16(1), 28–40 (2004)CrossRefGoogle Scholar
  14. 14.
    Sieg, A., Mobasher, B., Burke, R.: Web search personalization with ontological user profiles. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 525–534. ACM, November 2007Google Scholar
  15. 15.
    Teevan, J., Morris, M.R., Bush, S.: Discovering and using groups to improve personalized search. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 15–24. ACM, February 2009Google Scholar
  16. 16.
    Morris, M.R., Teevan, J., Bush, S.: Enhancing collaborative web search with personalization: groupization, smart splitting, and group hit-highlighting. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, pp. 481–484. ACM, November 2008Google Scholar
  17. 17.
    Hupfer, M.E., Detlor, B.: Gender and web information seeking: a self-concept orientation model. J. Am. Soc. Inf. Sci. Technol. 57(8), 1105–1115 (2006)CrossRefGoogle Scholar
  18. 18.
    Weber, I., Castillo, C.: The demographics of web search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 523–530. ACM, July 2010Google Scholar
  19. 19.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 17–24. ACM, April 2000Google Scholar
  20. 20.
    Chen, L., Sycara, K.: WebMate: a personal agent for browsing and searching. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 132–139. ACM, May 1998Google Scholar
  21. 21.
    Hu, J., Zeng, H.J., Li, H., Niu, C., Chen, Z.: Demographic prediction based on user’s browsing behavior. In: Proceedings of the 16th International Conference on World Wide Web, pp. 151–160. ACM, May 2007Google Scholar
  22. 22.
    Argamon, S., Koppel, M., Fine, J., Shimoni, A.R.: Gender, genre, and writing style in formal written texts. To appear in Text 23(3) (2003)Google Scholar
  23. 23.
    Jones, R., Kumar, R., Pang, B., Tomkins, A.: I know what you did last summer: query logs and user privacy. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 909–914. ACM, November 2007Google Scholar
  24. 24.
    van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a mobile context-aware tour guide. Wireless Netw. 3(5), 421–433 (1997)CrossRefGoogle Scholar
  26. 26.
    Church, K., Neumann, J., Cherubini, M., Oliver, N.: SocialSearchBrowser: a novel mobile search and information discovery tool. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 101–110. ACM, February 2010Google Scholar
  27. 27.
    Rhodes, B.: Using physical context for just-in-time information retrieval computers. IEEE Trans. 52(8), 1011–1014 (2003)Google Scholar
  28. 28.
    Karweg, B., Huetter, C., Böhm, K.: Evolving social search based on bookmarks and status messages from social networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1825–1834. ACM, October 2011Google Scholar
  29. 29.
    Hecht, B., Teevan, J., Morris, M.R., Liebling, D.J.: SearchBuddies: bringing search engines into the conversation. ICWSM 12, 138–145 (2012)Google Scholar
  30. 30.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–50. ACM, August 2005Google Scholar
  32. 32.
    Speretta, M., Gauch, S.: Personalized search based on user search histories. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 622–628. IEEE, September 2005Google Scholar
  33. 33.
    Yau, S.S., Liu, H., Huang, D., Yao, Y.: Situation-aware personalized information retrieval for mobile internet. In: Proceedings of the 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, pp. 639–644. IEEE, November 2003Google Scholar
  34. 34.
    Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff I’ve seen: a system for personal information retrieval and re-use. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 72–79. ACM, July 2003Google Scholar
  35. 35.
    Ying, J.J.C., Lu, E.H.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 19–26. ACM, November 2010Google Scholar
  36. 36.
    Sun, J.T., Zeng, H.J., Liu, H., Lu, Y., Chen, Z.: Cubesvd: a novel approach to personalized web search. In: Proceedings of the 14th International Conference on World Wide Web, pp. 382–390. ACM, May 2005Google Scholar
  37. 37.
    Pretschner, A., Gauch, S.: Ontology based personalized search. In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, pp. 391–398. IEEE (1999)Google Scholar
  38. 38.
    Bellotti, V., Begole, B., Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., Walendowski, A.: Activity-based serendipitous recommendations with the Magitti mobile leisure guide. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1157–1166. ACM, April 2008Google Scholar
  39. 39.
    Zhang, B.T., Seo, Y.W.: Personalized web-document filtering using reinforcement learning. Appl. Artif. Intell. 15(7), 665–685 (2001)CrossRefGoogle Scholar
  40. 40.
    Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. ACM SIGIR Forum 33(1), 6–12 (1999). ACMCrossRefGoogle Scholar
  41. 41.
    He, D., Göker, A., Harper, D.J.: Combining evidence for automatic web session identification. Inf. Process. Manage. 38(5), 727–742 (2002)CrossRefzbMATHGoogle Scholar
  42. 42.
    Jones, R., Klinkner, K.L.: Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 699–708. ACM, October 2008Google Scholar
  43. 43.
    Daoud, M., Lechani, L.T., Boughanem, M.: Towards a graph-based user profile modeling for a session-based personalized search. Knowl. Inf. Syst. 21(3), 365–398 (2009)CrossRefGoogle Scholar
  44. 44.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multiagent systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)CrossRefGoogle Scholar
  45. 45.
    Ricci, A., Viroli, M., Omicini, A.: CArtAgO: an infrastructure for engineering computational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) Proceedings of the E4MAS, pp. 102–119. Hakodate, Japan (2006)Google Scholar
  46. 46.
    Grassé, P.-P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Leslie, M., Christian, O.: Stigmergic epistemology, stigmergic cognition. Cogn. Syst. Res. 9(1), 136–149 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Normandie University, INSA Rouen, LITISRouenFrance

Personalised recommendations