Agreement Technologies Applied to Transmission Towers Maintenance

  • Pablo ChamosoEmail author
  • Fernando De la Prieta
  • Juan Francisco De Paz Santana
  • Javier Bajo Pérez
  • Ignacio Belacortu Arandia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9571)


In the context of Smart Cities, one of the main indispensable elements required by a city is the electric power, for which electric towers are used to distribute it. Transmission towers have electrodes which need to be reviewed on a regular basis by controlling its resistance in order to assure avoidable malfunctions not to appear. From the point of view of Smart Cities, it is possible to address this maintenance task by trying to minimize the cost of operation through the estimation of values and the reduction of the size of the population sample. To do so, the use of an intelligent-agent virtual-organization based architecture is proposed within this working environment, which by using mathematical estimation models and agreement based negotiations it is capable of maximizing the estimations, minimizing the associated cost. The proposed model is evaluated in a simulator through a real case study, which allows validating the proposed approach.


Multiagent System Smart City Virtual Organization Corrective Maintenance Transmission Towers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



TABÓN Project is a research project sponsored by the companies Iberdrola Distribución de Energía S.A., Iberdrola S.A. and ATISAE, and funded by the EEA Grants and Norway Grants (IDI-20140885).


  1. 1.
    Badri, A., Niazi, A.N., Hoseini, S.M.: Long term preventive generation maintenance scheduling with network constraints. Energy Procedia 14, 1889–1895 (2012)CrossRefGoogle Scholar
  2. 2.
    de Faria, H., Costa, J.G.S., Olivas, J.L.M.: A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 46, 201–209 (2015)CrossRefGoogle Scholar
  3. 3.
    Do, P., Voisin, A., Levrat, E., Iung, B.: A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. Reliab. Eng. Syst. Safe. 133, 22–32 (2015)CrossRefGoogle Scholar
  4. 4.
    España. Real Decreto-ley 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica. Boletín Oficial del Estado, 27 de diciembre de 2000, núm. 310. Accessed 10 Sept. 2015
  5. 5.
    Feng, Y., Wu, W., Zhang, B., Gao, J.: Transmission line maintenance scheduling considering both randomness and fuzziness. J. Uncertain Syst. 5(4), 243–256 (2011)Google Scholar
  6. 6.
    FIPA: Communicative Act Library Specification (2002). Accessed 10 Sept. 2015
  7. 7.
    Heras, S.: Case-based argumentation framework for agent societies. Ph.D. thesis, Universitat Politècnica de València (2011).
  8. 8.
    Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decis. Negot. 10(2), 199–215 (2001)CrossRefGoogle Scholar
  9. 9.
    Ji, K., Rui, X., Li, L., Leblond, A., McClure, G.: A novel ice-shedding model for overhead power line conductors with the consideration of adhesive/cohesive forces. Comput. Struct. 157, 153–164 (2015)CrossRefGoogle Scholar
  10. 10.
    Krishnanand, K.R., Dash, P.K., Naeem, M.H.: Detection, classification, and location of faults in power transmission lines. Int. J. Electr. Power Energy Syst. 67, 76–86 (2015)CrossRefGoogle Scholar
  11. 11.
    Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inform. Sci. 9(3), 219–242 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mayfield, J., Labrou, Y., Finin, T.: Evaluation of KQML as an agent communication language. In: Tambe, M., Müller, J., Wooldridge, M.J. (eds.) IJCAI-WS 1995 and ATAL 1995. LNCS, vol. 1037, pp. 347–360. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Murugan, R., Ramasamy, R.: Failure analysis of power transformer for effective maintenance planning in electric utilities. Eng. Fail. Anal. 55, 182–192 (2015)CrossRefGoogle Scholar
  14. 14. Gestor de la red y transportista | Red Eléctrica de España (2015). Accessed 10 Sep. 2015
  15. 15.
    Sánchez, A., Villarrubia, G., Zato, C., Rodríguez, S., Chamoso, P.: A gateway protocol based on FIPA-ACL for the new agent platform PANGEA. In: Bajo Pérez, J., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC, vol. 221, pp. 41–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Taher, S.A., Sadeghkhani, I.: Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration. Simul. Model. Pract. Theory 18(6), 787–805 (2010)CrossRefGoogle Scholar
  17. 17.
    Trappey, A.J., Trappey, C.V., Ma, L., Chang, J.C.: Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions. Comput. Ind. Eng. 84, 3–11 (2015)CrossRefGoogle Scholar
  18. 18.
    Wenner, F.: A method for measuring earth resistivity. J. Franklin Inst. 180(3), 373–375 (1915)CrossRefGoogle Scholar
  19. 19.
    Zarnani, A., Musilek, P., Shi, X., Ke, X., He, H., Greiner, R.: Learning to predict ice accretion on electric power lines. Eng. Appl. Artif. Intell. 25(3), 609–617 (2012)CrossRefGoogle Scholar
  20. 20.
    Zato, C., Villarrubia, G., Sánchez, A., Barri, I., Rubión, E., Fernández, A., Rebate, C., Cabo, J.A., Álamos, T., Sanz, J., Seco, J., Bajo, J., Corchado, J.M.: PANGEA – Platform for Automatic coNstruction of orGanizations of intElligent Agents. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 229–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Zhou, D., Zhang, H., Weng, S.: A novel prognostic model of performance degradation trend for power machinery maintenance. Energy 78, 740–746 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Chamoso
    • 1
    Email author
  • Fernando De la Prieta
    • 1
  • Juan Francisco De Paz Santana
    • 1
  • Javier Bajo Pérez
    • 2
  • Ignacio Belacortu Arandia
    • 3
  1. 1.Department of Computer Science and Automation ControlUniversity of SalamancaSalamancaSpain
  2. 2.Faculty of Informatics, Department of Artificial IntelligenceTechnical University of Madrid, Campus MontegancedoMadridSpain
  3. 3.Normalización Técnica (Technical Standardization)Iberdrola Distribución Eléctrica S.A.BilbaoSpain

Personalised recommendations