Advertisement

A Note on the Importance of Weak Convergence Rates for SPDE Approximations in Multilevel Monte Carlo Schemes

  • Annika LangEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 163)

Abstract

It is a well-known rule of thumb that approximations of stochastic partial differential equations have essentially twice the order of weak convergence compared to the corresponding order of strong convergence. This is already known for many approximations of stochastic (ordinary) differential equations while it is recent research for stochastic partial differential equations. In this note it is shown how the availability of weak convergence results influences the number of samples in multilevel Monte Carlo schemes and therefore reduces the computational complexity of these schemes for a given accuracy of the approximations.

Keywords

Stochastic partial differential equations Multilevel Monte Carlo methods Finite element approximations Weak error analysis Stochastic heat equation 

Notes

Acknowledgments

This research was supported in part by the Knut and Alice Wallenberg foundation as well as the Swedish Research Council under Reg. No. 621-2014-3995. The author thanks Lukas Herrmann, Andreas Petersson, and two anonymous referees for helpful comments.

References

  1. 1.
    Andersson, A., Kruse, R., Larsson, S.: Duality in refined Sobolev-Malliavin spaces and weak approximations of SPDE. Stoch. PDE: Anal. Comp. 4(1), 113–149 (2016). doi: 10.1007/s40072-015-0065-7
  2. 2.
    Barth, A., Lang, A.: Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises. Appl. Math. Opt. 66(3), 387–413 (2012). doi: 10.1007/s00245-012-9176-y MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, A., Lang, A.: Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int. J. Comp. Math. 89(18), 2479–2498 (2012). doi: 10.1080/00207160.2012.701735 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barth, A., Lang, A.: Simulation of stochastic partial differential equations using finite element methods. Stochastics 84(2–3), 217–231 (2012). doi: 10.1080/17442508.2010.523466 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barth, A., Lang, A.: \(L^p\) and almost sure convergence of a Milstein scheme for stochastic partial differential equations. Stoch. Process. Appl. 123(5), 1563–1587 (2013). doi: 10.1016/j.spa.2013.01.003 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barth, A., Lang, A., Schwab, Ch.: Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Num. Math. 53(1), 3–27 (2013). doi: 10.1007/s10543-012-0401-5
  7. 7.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. In: Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992). doi: 10.1017/CBO9780511666223
  8. 8.
    Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Alexander, K., et al. (eds.) Monte Carlo and Quasi-Monte Carlo methods 2006. Selected Papers Based on the presentations at the 7th International Conference ‘Monte Carlo and quasi-Monte Carlo Methods in Scientific Computing’, Ulm, Germany, August 14–18, 2006, pp. 343–358. Springer, Berlin (2008). doi: 10.1007/978-3-540-74496-2_20 Google Scholar
  9. 9.
    Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008). doi: 10.1287/opre.1070.0496 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Wasniewski, J., Yalamov, P.Y. (eds.) arge-Scale Scientific Computing, Third International Conference, LSSC 2001, Sozopol, Bulgaria, June 6-10, 2001, Revised Papers. Lecture notes in computer science, pp. 58–67. Springer, Heidelberg (2001). doi: 10.1007/3-540-45346-6_5 Google Scholar
  11. 11.
    Jentzen, A., Kurniawan, R.: Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equations with nonlinear diffusion coefficients (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and University of GothenburgGothenburgSweden

Personalised recommendations