Advertisement

Nanocrystalline Diamond: Deposition Routes and Clinical Applications

  • H. Sein
  • C. Maryan
  • A. Jones
  • J. Verran
  • N. Ali
  • I. U. Hassan
  • C. Rego
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

Diamond is one of the most advanced and most useful engineering materials in use today. The properties of synthetic diamond are very similar to that of single crystal diamond and it is well established that diamond has unique combinations of excellent physical, optical, chemical and biomedical properties. Typically, each application area for diamond requires the optimum properties of the material. The optimisation of diamond properties can only be achieved by operating on the microstructure, since it is almost impossible to alter diamond’s molecular structure or its chemical composition. This chapter discusses the use of nanocrystalline diamond for clinical applications.

Keywords

Diamond Nanotechnology Medical devices Surgical tools Chemical vapour deposition 

References

  1. 1.
    May, P. W. (2000). Philosophical Transactions of the Royal Society of London A, 358, 473.Google Scholar
  2. 2.
    Ashfold, M. N., May, P. W., Rego, C. A., & Everitt, N. M. (1994). Chemical Society Reviews, 23.Google Scholar
  3. 3.
    Ali, N., Ahmed, W., Hassan, I. U., & Rego, C. A. (1998). Surface Engineering, 14(4), 292.Google Scholar
  4. 4.
    Ahmed, N. A. G. (1980). Journal of Physics E: Scientific Instruments, 13, 295.Google Scholar
  5. 5.
    Mattox, D. M. (1982). In Proceedings of 4th International Colloquium on Plasma & Sputtering, Nice, France (p. 187), Paris Societe Fracais du Vide.Google Scholar
  6. 6.
    Mattox, D. M. (1963). Film deposition using accelerated ions. Sandia Corporation, Report, SC-DR-28163.Google Scholar
  7. 7.
    Ahmed, W., & Meakin, D. B. (1986). Journal of Crystal Growth, 79, 394.Google Scholar
  8. 8.
    Kelly, P. J., Arnell, R. D., & Ahmed, W. (1993). Materials World, 161.Google Scholar
  9. 9.
    Fan, Q. H., Pereira, E., Davim, P., Gracio, J., & Tavares, C. J. (2000). Surface & Coatings Technology, 96, 111.Google Scholar
  10. 10.
    Ahmed, W., Ackroyd, C. M. J., Ahmed, E., & Sarwar, M. (1991–1998). Islamabad Journal of Science, 11-9(1–2), 29–34.Google Scholar
  11. 11.
    Gruen, D. M. (1999). Annual Review of Materials Science, 29, 211.Google Scholar
  12. 12.
    Zhou, D., Gruen, D. M., Qin, L. C., McCauley, T. G., & Krauss, A. R. (1998). Journal of Applied Physics, 84, 1981.Google Scholar
  13. 13.
    Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2001). Diamond and Related Materials, 10, 561.Google Scholar
  14. 14.
    Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., & Yoshikawa, M. (1994). Advances in new diamond science and technology. Tokyo: MYU.Google Scholar
  15. 15.
    Hirabayashi, K., & Matsumoto, S. (1994). Journal of Applied Physics, 75, 1151.Google Scholar
  16. 16.
    Catledge, S. A., & Vohra, Y. K. (1999). Journal of Applied Physics, 86, 698.Google Scholar
  17. 17.
    Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2002). Applied Physics Letters, 80, 2880.Google Scholar
  18. 18.
    Zhu, W., Kochanski, G. P., & Jin, S. (1998). Science, 282, 1471.Google Scholar
  19. 19.
    Liu, J., Zhirnov, V. V., Mayers, A. F., Wojak, G. J., Choi, W. B., Hren, J. J., et al. (1995). Journal of Vacuum Science and Technology B, 13, 422.Google Scholar
  20. 20.
    Gohl, A., Alimova, A. N., Habermann, T., Mescheryakova, A. L., Nau, D., & Müller, G. (1999). Journal of Vacuum Science and Technology B, 17, 670.Google Scholar
  21. 21.
    Wu, K., Wang, E. G., Chen, J., & Xu, N. S. (1999). Journal of Vacuum Science and Technology B, 17, 1059.Google Scholar
  22. 22.
    Wu, K., Wang, E. G., Cao, Z. X., Wang, Z. L., & Jiang, X. (2000). Journal of Applied Physics, 88, 2967.Google Scholar
  23. 23.
    Gu, C., Jiang, X., Jin, Z., & Wang, W. (2001). Journal of Vacuum Science and Technology B, 19, 962.Google Scholar
  24. 24.
    Groning, O., Nilsson, L.-O., Groning, P., & Schlapbach, L. (2001). Solid State Electronics, 45, 929.Google Scholar
  25. 25.
    Ong, T. P., & Chang, R. P. H. (1989). Applied Physics Letters, 55, 2063.Google Scholar
  26. 26.
    Wu, R. L. C., Rai, A. K., Garscadden, A., Lee, P., Desai, H. D., & Miyoshi, K. (1992). Journal of Applied Physics, 72, 110.Google Scholar
  27. 27.
    Erz, R., Dotter, W., Jung, D., & Ehrhardt, H. (1993). Diamond and Related Materials, 2, 449.Google Scholar
  28. 28.
    Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C., & Lancin, M. (1997). Applied Physics Letters, 70, 2535.Google Scholar
  29. 29.
    Bhusari, D. M., Yang, J. R., Wang, T. Y., Lin, S. T., Chen, K. H., & Chen, L. C. (1998). Solid State Communications, 107, 301.Google Scholar
  30. 30.
    Chen, K. H., Bhusari, D. M., Yang, J. R., Lin, S. T., Yang, T. Y., & Chen, L. C. (1998). Thin Solid Films, 332, 34.Google Scholar
  31. 31.
    Chen, L. C., Wang, T. Y., Yang, J. R., Chen, K. H., Bhusari, D. M., Chang, Y. K., et al. (2000). Diamond and Related Materials, 9, 877.Google Scholar
  32. 32.
    Chen, L. C., Kichambare, P. D., Chen, K. H., Wu, J.-J., Yang, J. R., & Lin, S. T. (2001). Journal of Applied Physics, 89, 753.Google Scholar
  33. 33.
    Yang, W. B., Lu, F. X., & Cao, Z. X. (2002). Journal of Applied Physics, 91, 10068.Google Scholar
  34. 34.
    Sharda, T., Soga, T., & Jimbo, T. (2003). Journal of Applied Physics, 93(101), 368.Google Scholar
  35. 35.
    Hirari, H., Kondo, K., Yoshizawa, N., & Shiraishi, M. (1994). Applied Physics Letters, 64, 1797.Google Scholar
  36. 36.
    Hirai, H., Kondo, K., Kim, M., Koinuma, H., Kurashima, K., & Bando, Y. (1997). Applied Physics Letters, 71, 3016.Google Scholar
  37. 37.
    Davanloo, R., Lee, T. J., Park, H., You, J. H., & Collins, C. B. (1993). Journal of Materials Research, 8, 3090.Google Scholar
  38. 38.
    Erdemir, A., Fenske, G. R., Krauss, A. R., Gruen, D. M., McCauley, T. G., & Csencsits, R. T. (1999). Surface & Coatings Technology, 90–91, 565.Google Scholar
  39. 39.
    Hogmark, S., Hollman, O., Alahelisten, A., & Hedenqvist, O. (1996). Wear, 200, 225.Google Scholar
  40. 40.
    Hollman, P., Wanstrand, O., & Hogmark, S. (1998). Diamond and Related Materials, 7, 1471.Google Scholar
  41. 41.
    Catledge, S. A., & Vohra, Y. K. (1998). Journal of Applied Physics, 84, 6469.Google Scholar
  42. 42.
    Yoshikawa, H., MoreI, C., & Koga, Y. (2001). Diamond and Related Materials, 10, 1588.Google Scholar
  43. 43.
    Davanloo, R., Lee, T. J., Jander, D. R., Park, H., You, J. H., & Co1lins, C. B. (1992). Journal of Applied Physics, 71, 1446.Google Scholar
  44. 44.
    DavanIoo, R., Collins, C. B., & Koivusaari, K. J. (1999). Journal of Materials Research, 14, 3474.Google Scholar
  45. 45.
    Toprani, N., Catledge, S. A., Vohra, Y. K., & Thompson, R. (2000). Journal of Materials Research, 15, 1052.Google Scholar
  46. 46.
    Bi, B., Huang, W. S., Asmussen, J., & Golding, B. (2002). Diamond and Related Materials, 11, 677.Google Scholar
  47. 47.
    Krauss, A. R., Auciello, O., Gruen, D. M., Jayatissa, A., Sumant, A., Tucek, J., et al. (2001). Diamond and Related Materials, 10, 1952.Google Scholar
  48. 48.
    Butler, J. E., Hsu, D. S. Y., Houston, B. H., Liu, X., Ignola, J., Feygelson, T., et al. (2002) Paper 6.2. Presented at the 8th International Conference New Diamond Science and Technology 2002. The University of Melbourne, Australia. The complete presentation is available online at http://www.conferences.unimelb.edu.au/icndst-8/presenta-tions.htm
  49. 49.
    Sekaric, L., Parpia, J. M., Craighead, H. G., Feygelson, T., Houston, B. H., & Butler, J. E. (2002). Applied Physics Letters, 81, 4455.Google Scholar
  50. 50.
    Lee, J., Hong, B., Messier, R., & Collins, R. W. (1996). Applied Physics Letters, 69, 1716.Google Scholar
  51. 51.
    Lee, J., Collins, R. W., Messier, R., & Strausser, Y. E. (1997). Applied Physics Letters, 70, 1527.Google Scholar
  52. 52.
    Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2000). Applied Physics Letters, 77, 4304.Google Scholar
  53. 53.
    Gu, C. Z., & Jiang, X. (2000). Journal of Applied Physics, 88, 1788.Google Scholar
  54. 54.
    Jiang, X., & Jia, C. L. (2002). Applied Physics Letters, 80, 2269.Google Scholar
  55. 55.
    Teu, K., Ito, H., Hori, M., Takeo, T., & Goto, T. (2000). Journal of Applied Physics, 87, 4572.Google Scholar
  56. 56.
    Bhusari, D. M., Yang, J. R., Wang, T. Y., Chen, K. H., Lin, S. T., & Chen, L. C. (1998). Journal of Materials Research, 13(7), 1769–1773.Google Scholar
  57. 57.
    Michler, J., Laufer, S., Seehofer, H., Blank, E., Haubner, R., & Lux, B. (1999). Proceedings of 10th International Conference on Diamond and Diamond-like Materials, Prague, Czech Republic, September 9–17, paper 5.231.Google Scholar
  58. 58.
    Heiman, A., Gouzman, I., Christiansen, S. H., Strunk, H. P., Comtet, G., Hellner, L., et al. (2001). Journal of Applied Physics, 89, 2622.Google Scholar
  59. 59.
    Jiang, N., Kujime, S., Ota, I., Inaoka, T., Shintani, Y., Makita, H., et al. (2000). Journal of Crystal Growth, 218, 265.Google Scholar
  60. 60.
    Xin, H. W., Zhang, Z. M., Ling, X., Xi, Z. L., Shen, H. S., Dai, Y. B., et al. (2002). Diamond and Related Materials, 11, 228.Google Scholar
  61. 61.
    Konov, V. L., Smolin, A. A., Ralchenko, V. G., Pimenov, S. M., Obraztsova, E. D., Loubnin, E. N., et al. (1995). Diamond and Related Materials, 4, 1073.Google Scholar
  62. 62.
    Nistor, L. C., Landuyt, J. V., Ralchenko, V. G., Obraztsova, E. D., & Smolin, A. A. (1997). Diamond and Related Materials, 6, 159.Google Scholar
  63. 63.
    Lin, T., Yu, Y., Wee, T. S., Shen, Z. X., & Loh, K. P. (2000). Applied Physics Letters, 77, 2692.Google Scholar
  64. 64.
    Yang, T.-S., Lai, J.-Y., Cheng, C.-L., & Wong, M.-S. (2001). Diamond and Related Materials, 10, 2161.Google Scholar
  65. 65.
    Amaratunga, G., Putnis, A., Clay, K., & Milne, W. (1989). Applied Physics Letters, 55, 634.Google Scholar
  66. 66.
    Amaratunga, G. A. J., Silva, S. R. P., & McKenzie, D. A. (1991). Journal of Applied Physics, 70, 5374.Google Scholar
  67. 67.
    Gruen, D. M., Shengzhong, L., Krauss, A. R., Luo, J., & Pan, X. (1994). Applied Physics Letters, 64(9), 1502.Google Scholar
  68. 68.
    Zhou, D., McCauley, T. G., Qin, L. C., Krauss, A. R., & Gruen, D. M. (1998). Journal of Applied Physics, 83(1), 540.Google Scholar
  69. 69.
    Gruen, D. M. (1999). Annual Review of Materials Science, 29, 211.Google Scholar
  70. 70.
    McCauley, T. M., Gruen, D. M., & Krauss, A. R. (1998). Applied Physics Letters, 73(9), 1646.Google Scholar
  71. 71.
    Gruen, D. M., Redfem, P. C., Homer, D. A., Zapol, P., & Curtiss, L. A. (1999). Journal of Physical Chemistry, 103, 5459.Google Scholar
  72. 72.
    Gruen, D. M., Pan, X., Krauss, A. R., Liu, S., Luo, J., & Foster, C. M. (1994). Journal of Vacuum Science and Technology A, 9, 1491.Google Scholar
  73. 73.
    Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., & Chang, R. P. H. (1997). Journal of Applied Physics, 82, 4546.Google Scholar
  74. 74.
    Zhou, D., McCauley, T. G., Qin, L. C., Krauss, A. R., & Gruen, D. M. (1998). Journal of Applied Physics, 83, 540.Google Scholar
  75. 75.
    Bhattacharyya, S., Auciello, O., Birrel, J., Carlisle, J. A., Curtiss, L. A., Goyette, A. N., et al. (2001). Applied Physics Letters, 79, 1441.Google Scholar
  76. 76.
    Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., et al. (1997). Journal of Applied Physics, 82(9), 4546.Google Scholar
  77. 77.
    Sun, X. S., Wang, N., Zhang, W. J., Woo, H. K., Han, X. D., Bello, I., et al. (1999). Journal of Materials Research, 14(8), 3204.Google Scholar
  78. 78.
    Bhusari, D. M., Yang, J. R., Wang, T. Y., Chen, K. H., Lin, S. T., & Chen, L. C. (1998). Materials Letters, 36, 279.Google Scholar
  79. 79.
    Xu, N. S., Chen, J., Feng, Y. T., & Deng, S. Z. (2000). Journal of Vacuum Science and Technology B, 18, 1048.Google Scholar
  80. 80.
    Maillard-Schaller, E., Kuettel, O. M., Diederich, L., Schlapbach, L., Zhirnov, V. V., & Belobrov, P. I. (1999). Diamond and Related Materials, 8, 805.Google Scholar
  81. 81.
    Yagi, H., Ide, T., Toyota, H., & Mori, Y. (1998). Journal of Materials Research, 13(6), 1724.Google Scholar
  82. 82.
    Lee, J., Hong, B., Messier, R., & Collins, R. W. (1996). Applied Physics Letters, 69(9), 1716.Google Scholar
  83. 83.
    Xu, T., Yang, S., Lu, J., Xue, Q., Li, J., Guo, W., et al. (2001). Diamond and Related Materials, 10, 1441.Google Scholar
  84. 84.
    McGinnis, S. P., Kelly, M. A., Hagstrom, S. B., & Alvis, R. L. (1996). Journal of Applied Physics, 79(1), 170.Google Scholar
  85. 85.
    Yoshikawa, H., Morel, C., & Koga, Y. (2001). Diamond and Related Materials, 10, 1588.Google Scholar
  86. 86.
    Chen, L. C., Kichambare, P. D., Chen, K. H., Wu, J.-J., Yang, J. R., & Lin, S. T. (2001). Journal of Applied Physics, 89(1), 753.Google Scholar
  87. 87.
    Mitura, S., Mitura, A., Niedzielski, P., & Couvrat, P. (1999). Chaos. Solitons & Fractals, 10(9), 2165.Google Scholar
  88. 88.
    Sharda, T., Umeno, M., Soga, T., & Jimbo, T. (2000). Applied Physics Letters, 77(26), 4304.Google Scholar
  89. 89.
    Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2000). Diamond and Related Materials, 9, 1331.Google Scholar
  90. 90.
    Sharda, T., Soga, T., Jimbo, T., & Umeno, M. (2001). Diamond and Related Materials, 10, 1592.Google Scholar
  91. 91.
    Beake, B. D., Hassan, I. U., Rego, C. A., & Ahmed, W. (2000). Diamond and Related Materials, 9, 1421.Google Scholar
  92. 92.
    Kundu, S. N., Basu, M., Maity, A. B., Chaudhuri, S., & Pal, A. K. (1997). Materials Letters, 31, 303.Google Scholar
  93. 93.
    Zhou, X. T., Li, Q., Meng, F. Y., Bello, L., Lee, C. S., Lee, S. T., et al. (2002). Applied Physics Letters, 80, 3307.Google Scholar
  94. 94.
    Groning, O., Kuttel, O. M., Groning, P., & Schlapbach, L. (1999). Journal of Vacuum Science and Technology B, 17, 1970.Google Scholar
  95. 95.
    Yang, T. S., Lai, J. Y., Wong, M. S., & Cheng, C. L. (2002). Journal of Applied Physics, 92, 2133.Google Scholar
  96. 96.
    Yang, T. S., Lai, J. Y., Wong, M. S., & Cheng, C. L. (2002). Journal of Applied Physics, 92, 499.Google Scholar
  97. 97.
    Zhou, X. T., Li, Q., Meng, R. Y.. Bello, I.. Lee, C. S.. Lee, S. T., et al. (2002). Paper P1.01.11. Presented at the Eighth International Conference New Diamond Science and Technology. The University of Melbourne, Australia.Google Scholar
  98. 98.
    Jiang, N., Sugimoto, K., Nishimura, K., Sbintani, Y., & Hiraki, A. (2002). Journal of Crystal Growth, 242, 362.Google Scholar
  99. 99.
    Prawer, S., Peng, J. L., Orwa, J. O., McCa11um, J. C., Jamieson, D. N., & Bursill, L. A. (2000). Physical Review B, 62, R16360.Google Scholar
  100. 100.
    Wang, Z., Yu, G., Yu, L., Zhu, R., Zhu, D., & Xu, H. (2002). Journal of Applied Physics, 91, 3480.Google Scholar
  101. 101.
    Yusa, H. (2002). Diamond and Related Materials, 11, 87.MathSciNetGoogle Scholar
  102. 102.
    Gogotsi, Y., Welz, S., Ersoy, D. A., & McNallan, M. J. (2001). Nature, 411, 283.Google Scholar
  103. 103.
    Malshe, A. P., Park, B. S., Brown, W. D., & Naseem, H. A. (1999). Diamond and Related Materials, 8, 1198.Google Scholar
  104. 104.
    Tokura, C., Yang, F., & Yoshikawa, M. (1992). Thin Solid Films, 29, 49.Google Scholar
  105. 105.
    Zhao, T., Grogan, D. F., Bovard, B. G., & Macleod, H. A. (1992). Applied Optics, 31, 1483.Google Scholar
  106. 106.
    Hirata, A., Tokura, H., & Yoshikawa, M. (1992). Thin Solid Films, 29, 43.Google Scholar
  107. 107.
    Lee, D. G., & Singh, R. K. (1995). Beam-solid interactions for materials synthesis and characterization. In D. E. Luzzi, T. F. Heinz, M. Iwaki, & D. C. Jacobson (Eds.), Materials Research Society Symposium Proceedings, Pittsburgh, PA (p. 699).Google Scholar
  108. 108.
    Wolter, S. D., Okuzumi, F., Prater, J. T., & Siter, Z. (2001). Physical Status Solidi(a), 186(2), 331.Google Scholar
  109. 109.
    Hassan, I. U., Brewer, N., Rego, C. A., Ahmed, W., Beake, B. D., Ali, N., et al. (2002). In J. Gracio, P. Davim, Q. H. Fan, & N. Ali (Eds.), Proceedings of New Developments on Tribology: Theoretical Analysis and Application to Industrial Processes (p. 153). University of Aveiro, Portugal, May 2002. ISBN 972-789-059-8.Google Scholar
  110. 110.
    Gilbert, D. R., Lee, D.-G., & Singh, R. K. (1998). Journal of Materials Research, 13(7), 1735.Google Scholar
  111. 111.
    Silva, F., Gicquel, A., Chiron, A., & Achard, J. (2000). Diamond and Related Materials, 9, 1965.Google Scholar
  112. 112.
    Gicquel, A., Hassouni, K., & Silva, F. (2000). Journal of the Electrochemical Society, 14716, 2218.Google Scholar
  113. 113.
    Zhu, W., Badzian, A. R., & Messier, R. (1990). Diamond Opt. 111, San Diego, California. In: SPIE (p. 187). The International Society for Optics Engineering.Google Scholar
  114. 114.
    Chen, C. F., & Hong, T. M. (1993). Surface & Coatings Technology, 5, 143.Google Scholar
  115. 115.
    Kumar, S., Dixit, P. N., Sarangi, D., & Bhattacharyya, R. (1999). Journal of Applied Physics, 85, 3866.Google Scholar
  116. 116.
    Li, X., Hayashi, Y., & Nishino, S. (1997). Japanese Journal of Physics, 36, 5197.Google Scholar
  117. 117.
    Ali, N., Neto, V. F., Sen, M., Misra, D. S., Cabral, G., Ogwu, A. A., et al. (2004). Thin Solid Films, 469–470(22), 154.Google Scholar
  118. 118.
    Hayashi, Y., Drawl, W., & Messier, R. (1992). Japanese Journal of Applied Physics, 31, L194.Google Scholar
  119. 119.
    Ali, N., Neto, V. F., & Gracio, J. (2003). Journal of Materials Research, 18(2), 296–304.Google Scholar
  120. 120.
    Ali, N., Kousar, Y., Fan, Q. H., Neto, V. F., & Gracio, J. (2003). Journal of Materials Science Letters, 22, 1039–1042.Google Scholar
  121. 121.
    Field, J. E. (Ed.). (1992). Properties of natural and synthetic diamond (p. 667). San Diego, CA: Academic Press.Google Scholar
  122. 122.
    Angus, J. C., & Hayman, C. C. (1988). Science, 241, 913.Google Scholar
  123. 123.
    Ahmed, W., Ali, N., Hassan, I. U., & Penlington, R. (1998). Finishing, 1, 22.Google Scholar
  124. 124.
    Barton, K., Campbell, A., Chinn, J. A., Griffin, C. D., Anderson, D. H., Klein, K., et al. Biomedical Engineering Society (BMES) Bulletin, 25(1), 3.Google Scholar
  125. 125.
    Goodman, S. L., Tweden, K. S., & Albrecht, R. M. (1996). Journal of Biomedical Materials Research, 32, 249–258.Google Scholar
  126. 126.
    Cui, F. Z., & Li, D. J. (2000). Surface & Coatings Technology, 131, 481–487.Google Scholar
  127. 127.
    McLaughlin, J., Meenan, B., Maguire, P., & Jamieson, N. (1996). Diamond and Related Materials, 8, 486–491.Google Scholar
  128. 128.
    Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Diamond and Related Materials, 8, 457–462.Google Scholar
  129. 129.
    Thomson, A., Law, F. G., Rushton, N., & Franks, J. (1991). Biomaterials, 9(1), 37.Google Scholar
  130. 130.
    Dion, I., Roquey, C. H., Baudet, E., Basse, B., & More, N. (1993). BioMedical Materials and Engineering, 3, 51.Google Scholar
  131. 131.
    Yang, P., Huang, N., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2002). Surface & Coatings Technology, 156, 284–288.Google Scholar
  132. 132.
    Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., Huang, N., Chuan, P. K., et al. (2002). Biomaterials, 23, 2545–2552.Google Scholar
  133. 133.
    Leng, Y. X., Sun, H., Yang, P., Chen, J. Y., Wang, J., Wan, G. J., et al. (2001). Thin Solid Films, 398–399, 471–475.Google Scholar
  134. 134.
    Leng, Y. X., Yang, P., Chen, J. Y., Sun, H., Wang, J., Wang, G. J., et al. (2001). Surface & Coatings Technology, 138, 296–300.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • H. Sein
    • 1
  • C. Maryan
    • 1
  • A. Jones
    • 1
  • J. Verran
    • 1
  • N. Ali
    • 1
  • I. U. Hassan
    • 1
  • C. Rego
    • 1
  • W. Ahmed
    • 2
  • M. J. Jackson
    • 3
    Email author
  1. 1.Manchester Metropolitan UniversityManchesterUK
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations