Advertisement

Diamond Surgical Tools

  • H. Sein
  • C. Maryan
  • A. Jones
  • J. Verran
  • N. Ali
  • I. U. Hassan
  • C. Rego
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

Deposition technology has played a major part in the creation of today’s scientific devices. Computers, electronic equipment, biomedical implants, cutting tools, optical components, and automotive parts are all based on material structures created by thin film deposition processes. There are many coating processes ranging from the traditional electroplating to the more advanced laser or ion-assisted deposition. However, the choice of deposition technology depends upon many factors including substrates properties, component dimensions and geometry, production requirements, and the exact coating specification needed for the application of interest. For complex geometry components, small feature sizes, good reproducibility, and high product throughput, chemical vapor deposition (CVD) is a highly effective technology. For example, low pressure and plasma-assisted CVD is a well-established technology for semiconductor devices, which has very small feature sizes and complex geometrical arrangements on the surface.

Keywords

Surgical tools Diamond Vapour deposition Surgery Dental tools 

References

  1. 1.
    Spear, K. E., & Dismukes, J. P. (1994). Synthetic diamond: Emerging CVD science and technology. New York: The Electrochemical Society, Wiley.Google Scholar
  2. 2.
    Wentorf, R. H. (1965). Journal of Physical Chemistry, 69, 3063.CrossRefGoogle Scholar
  3. 3.
    Butler, J. E., & Woodin, R. L. (1993). Philosophical Transactions of the Royal Society of London, A342, 209.Google Scholar
  4. 4.
    Ashfold, M. N. R., May, P. W., Rego, C. A., & Everitt, N. M. (1994). Chemical Society Reviews, 23, 21.CrossRefGoogle Scholar
  5. 5.
    Bachmann, P. K., & Messier, R. (1989). Chemical & Engineering News, 67, 24.CrossRefGoogle Scholar
  6. 6.
    Spear, K. E. (1989). Journal of American Ceramic Society, 72, 171.CrossRefGoogle Scholar
  7. 7.
    Joffreau, P. O., Haubner, R., & Lux, B. (1988). Materials Research Society Symposium Proceedings, EA-15, 15.Google Scholar
  8. 8.
    Spitsyn, B. V., Bouilov, L. L., & Deryagin, B. V. (1981). Journal of Crystal Growth, 52, 219.CrossRefGoogle Scholar
  9. 9.
    Angus, J. C. (1989). Proceedings of the Electrochemical Society, 89, 1.Google Scholar
  10. 10.
    Yarbrough, W. A., & Messier, R. (1996). Science, 247, 688.CrossRefGoogle Scholar
  11. 11.
    Messier, R., Badzian, A. R., Badzian, T., Spear, K. E., Bachmann, P. K., & Roy, R. (1987). Thin Solid Films, 153, 1.CrossRefGoogle Scholar
  12. 12.
    Angus, J. C., & Hayman, C. C. (1988). Science, 241, 913.CrossRefGoogle Scholar
  13. 13.
    Spear, K. E. (1989). Journal of the American Ceramic Society, 72, 171.CrossRefGoogle Scholar
  14. 14.
    Kamo, M., Sato, U., Matsumoto, S., & Setaka, N. (1983). Journal of Crystal Growth, 62, 642.CrossRefGoogle Scholar
  15. 15.
    Saito, Y., Matsuda, S., & Nagita, S. (1986). Journal of Materials Science Letters, 5, 565.CrossRefGoogle Scholar
  16. 16.
    Saito, Y., Sato, K., Tanaka, H., & Miyadera, H. (1989). Journal of Materials Science, 24, 293.CrossRefGoogle Scholar
  17. 17.
    Williams, B. E., Glass, J. T., Davis, R. F., Kobashi, K. & Horiuchi, T. (1988). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 6,1819.Google Scholar
  18. 18.
    Kobashi, K., Nishimura, K., Kawate, Y., & Horiuchi, T. (1988). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 6, 1816.Google Scholar
  19. 19.
    Liou, Y., Inspector, A., Weimer, R., & Messier, R. (1989). Applied Physics Letters, 55, 631.CrossRefGoogle Scholar
  20. 20.
    Zhu, W., Randale, C. A., Badzian, A. R. & Messier, R. (1989). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 7, 2315.Google Scholar
  21. 21.
    Matsumoto, S. (1985). Journal of Materials Science Letters, 4, 600.CrossRefGoogle Scholar
  22. 22.
    Matsumoto, S., Hino, M., & Kobayashi, T. (1987). Applied Physics Letters, 51, 737.CrossRefGoogle Scholar
  23. 23.
    Vitkayage, D. J., Rudder, R. A., Fountain, G. G. & Markunas, R. J. (1988). Journal of Vacuum Science & Technology A, 6, 1812.Google Scholar
  24. 24.
    Meyer, D. E., Ianno, N. J., Woolam, J. A., Swartzlander, A. B., & Nelson, A. J. (1988). Journal of Materials Research, 3, 1397.CrossRefGoogle Scholar
  25. 25.
    Wood, P., Wydeyen, T., & Tsuji, O. (1988). Programs and Abstracts of the First International Conference on New Diamond Science and Technology, New Diamond Forum, Tokyo, Japan.Google Scholar
  26. 26.
    Jackman, R. B., Beckman, J., & Foord, J. S. (1995). Applied Physics Letters, 66, 1018.CrossRefGoogle Scholar
  27. 27.
    Suzuki, K., Sawabe, A., Yasuda, H., & Inuzuka, T. (1987). Applied Physics Letters, 50, 728.CrossRefGoogle Scholar
  28. 28.
    Akatsuka, F., Hirose, Y., & Kamaki, K. (1988). Japanese Journal of Applied Physics, 27, L1600.CrossRefGoogle Scholar
  29. 29.
    Suzuki, K., Sawabe, A., & Inuzuka, T. (1990). Japanese Journal of Applied Physics, 29, 153.CrossRefGoogle Scholar
  30. 30.
    Niu, C. M., Tsagaropoulos, G., Baglio, J., Dwight, K., & Wold, A. (1991). Journal of Solid State Chemistry, 91, 47.CrossRefGoogle Scholar
  31. 31.
    Popovici, G., Chao, C. H., Prelas, M. A., Charlson, E. J., & Meese, J. M. (1995). Journal of Materials Research, 10, 2011.CrossRefGoogle Scholar
  32. 32.
    Chao, C. H., Popovici, G., Charlson, E. J., Charlson, E. M., Meese, J. M., & Prelas, M. A. (1994). Journal of Crystal Growth, 140, 454.CrossRefGoogle Scholar
  33. 33.
    Postek, M. T., Howard, K. S., Johnson, A. H., & Macmichael, K. L. (1980). Scanning electron microscopy.Google Scholar
  34. 34.
    Kobashi, K., Nishimura, K., Kawate, Y., & Horiuchi, T. (1988). Physical Review B, 38, 4067.CrossRefGoogle Scholar
  35. 35.
    Pickrell, D., Zhu, W., Badzian, A. R., Messier, R., & Newnham, R. E. (1991). Journal of Materials Research, 6, 1264.CrossRefGoogle Scholar
  36. 36.
    Oatley, C. W. (1972). Scanning electron microscope. Cambridge: Cambridge University Press.Google Scholar
  37. 37.
    Tobin, M. C. (1971). Laser Raman spectroscopy. New York: Wiley Interscience.Google Scholar
  38. 38.
    Colthup, N. B., Daley, L. H., & Wiberley, S. E. (1975). Introduction to infrared and raman spectroscopy. New York: Academic Press.Google Scholar
  39. 39.
    Raman, C. V., & Krishnan, K. S. (1928). Nature, 121, 501.CrossRefGoogle Scholar
  40. 40.
    Nemanich, R. J., Glass, J. T., Lucovsky, G., & Shroder, R. E. (1988). Journal of Vacuum Science & Technology A, 6, 1783.CrossRefGoogle Scholar
  41. 41.
    Knight, D. S., & White, W. B. (1989). Journal of Materials Research, 4, 385.CrossRefGoogle Scholar
  42. 42.
    Solin, S. A., & Ramdas, A. K. (1970). Physical Review B, 1, 1687.CrossRefGoogle Scholar
  43. 43.
    Leyendecker, T., Lemmer, O., Jurgens, A., Esser, S., & Ebberink, J. (1991). Surface & Coatings Technology, 48, 253.CrossRefGoogle Scholar
  44. 44.
    Murakawa, M., & Takeuchi, S. (1991). Surface & Coatings Technology, 49, 359.CrossRefGoogle Scholar
  45. 45.
    Yaskiki, T., Nakamura, T., Fujimori, N., & Nakai, T. (1992). Surface & Coatings Technology, 52, 81.CrossRefGoogle Scholar
  46. 46.
    Reineck, J., Soderbery, S., Eckholm, P., & Westergren, K. (1993). Surface & Coatings Technology, 5, 47.CrossRefGoogle Scholar
  47. 47.
    Wang, H. Z., Song, R. H., & Tang, S. P. (1993). Diamond and Related Materials, 2, 304.CrossRefGoogle Scholar
  48. 48.
    Inspector, A., Bauer, C. E., & Oles, E. J. (1994). Surface & Coatings Technology, 68(69), 359.CrossRefGoogle Scholar
  49. 49.
    Kanda, K., Takehana, S., Yoshida, S., Watanabe, R., Takano, S., Ando, H., et al. (1995). Surface & Coatings Technology, 73, 115.CrossRefGoogle Scholar
  50. 50.
    Luz, B. & Haubner, R. (1991). Diamond and Diamond-like films and coatings. In R. E. Clausing, L. L. Horton, J. C. Angus & P. Koidl (Eds.), NATO-ISI Series B, Physics (266, 579). NY: Plenum Press.Google Scholar
  51. 51.
    Chen, X., & Narayan, J. (1993). Journal of Applied Physics, 74, 1468.Google Scholar
  52. 52.
    Klass, W., Haubner, R., & Lux, B. (1997). Diamond and Related Materials, 6, 240.CrossRefGoogle Scholar
  53. 53.
    Zhu, W., Yang, P. C., Glass, J. T., & Arezzo, F. (1995). Journal of Materials Research, 10, 1455.CrossRefGoogle Scholar
  54. 54.
    Lux, B., & Haubner, R. (1996). Ceramics International, 22, 347.CrossRefGoogle Scholar
  55. 55.
    R. C. Weast (Ed.) (1989–1990). C.R.C. Handbook of chemistry and physics. FL: C.R.C. Press.Google Scholar
  56. 56.
    Haubner, R., Lindlbauer, A., & Lux, B. (1993). Diamond and Related Materials, 2(1505), 72.CrossRefGoogle Scholar
  57. 57.
    Chang, C. P., Flamm, D. L., Ibbotson, D. E., & Mucha, J. A. (1988). Journal of Applied Physics, 63, 1744.CrossRefGoogle Scholar
  58. 58.
    Gusev, M. B., Babaey, V. G., Khvostov, V. V., Lopez-Ludena, G. M., Yu Brebadze, A., Koyashin, I. Y., et al. (1997). Diamond and Related Materials, 6, 89–94.CrossRefGoogle Scholar
  59. 59.
    Endler, I., Barsch, K., Leonhardt, A., Scheibe, H. J., Ziegele, H., Fuchs, I., et al. (1999). Diamond and Related Materials, 8, 834–839.CrossRefGoogle Scholar
  60. 60.
    Kamiya, S., Takahashi, H., Polini, R., & Traversa, E. (2000). Diamond and Related Materials, 9, 191–194.CrossRefGoogle Scholar
  61. 61.
    Inspector, A., Oles, E. J. & Bauer, C. E. (1997). International Journal of Refractory Metals and Hard Materials, 15, 49.CrossRefGoogle Scholar
  62. 62.
    Itoh, H., Osaki, T., Iwahara, H., & Sakamoto, H. (1991). Journal of Materials Science, 26, 370.Google Scholar
  63. 63.
    Liu, H. & Dandy, D. S. (1996). Diamond chemical vapor deposition. NY: Noyes.Google Scholar
  64. 64.
    Nazare, M. H. & Neves, A. J. (1998). Properties, growth and application of diamond.Google Scholar
  65. 65.
    Zhang, G. F., & Buck, V. (2000). Surface & Coatings Technology, 132, 256.CrossRefGoogle Scholar
  66. 66.
    May, P., Rego, C., Thomas, R., Ashfold, M. N., & Rosser, K. N. (1994). Diamond and Related Materials, 3, 810.CrossRefGoogle Scholar
  67. 67.
    Gouzman, I., & Hoffmann, A. (1998). Diamond and Related Materials, 7, 209.CrossRefGoogle Scholar
  68. 68.
    Wang, W., Liao, K., Wang, J., Fang, L., Ding, P., Esteve, J., et al. (1999). Diamond and Related Materials, 8, 123.CrossRefGoogle Scholar
  69. 69.
    Wang, B. B., Wang, W., & Liao, K. (2001). Diamond and Related Materials, 10, 1622.CrossRefGoogle Scholar
  70. 70.
    Kim, Y. K., Han, Y. S., & Lee, J. Y. (1998). Diamond and Related Materials, 7, 96.CrossRefGoogle Scholar
  71. 71.
    Wang, W. L., Liao, K. J., & Gao, G. C. (2000). Surface & Coatings Technology, 126, 195.CrossRefGoogle Scholar
  72. 72.
    Polo, M. C., Wang, W., Sanshez, G., Andujar, J., & Esteve, J. (1997). Diamond and Related Materials, 6, 579.CrossRefGoogle Scholar
  73. 73.
    Sein, H., Ahmed, W., Rego, C. A., Jones, A. N., Amar, M., Jackson, M. J., et al. (2003). Journal of Physics: Condensed Matter, 15, S2961–S2967.Google Scholar
  74. 74.
    Amirhaghi, S., Reehal, H. S., Plappert, E., Bajic, Z., Wood, R. J. K., & Wheeler, D. W. (1999). Diamond and Related Materials, 8, 845–849.CrossRefGoogle Scholar
  75. 75.
    Jackson, M. J., Gill, M. D. H., Ahmed, W., & Sein, H. (2003). Proceedings of the Institute of Mechanical Engineers—(Part L). Journal of Materials, 217, 77–83.Google Scholar
  76. 76.
    Sein, H., Jackson, M. J., Ahmed, W., & Rego, C. A. (2000). New Diamond and Frontier Carbon Technology, 12(6), 1–10.Google Scholar
  77. 77.
    Sein, H., Ahmed, W., Jackson, M. J., Woodwards, R., & Polini, R. (2004). Thin Solid Films, 447–448, 455–461.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • H. Sein
    • 1
  • C. Maryan
    • 1
  • A. Jones
    • 1
  • J. Verran
    • 1
  • N. Ali
    • 1
  • I. U. Hassan
    • 1
  • C. Rego
    • 1
  • W. Ahmed
    • 2
  • M. J. Jackson
    • 3
    Email author
  1. 1.Manchester Metropolitan UniversityManchesterUK
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations