Advertisement

Surface Engineering of Artificial Heart Valves to Using Modified Diamond-Like Coatings

  • N. Ali
  • Y. Kousa
  • J. Gracio
  • G. Cabral
  • A. Sousa
  • T. Shokufar
  • E. Titus
  • J. C. Madaleno
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

There are two types of artificial heart valves, namely, (i) biological valves and (ii) mechanical valves. biological heart valves are made from tissue taken from animals or human cadavers. They are treated with preservatives and sterilized for human implantation. On the other hand, mechanical heart valves are made of man-made materials. The advantage of mechanical valves over biological valves is that they normally last for a comparatively longer lifetime. The biological valves exhibit a shorter lifetime and tend to wear out with time in service. This chapter discusses mechanical heart valves and highlights the underlying problems faced with biomaterials used in the manufacture of such valves.

Keywords

Heart valves Surfaces Medical devices Diamond Carbon 

References

  1. 1.
    Barton, K., Campbell, A., Chinn, J. A., Griffin, C. D., Anderson, D. H., Klein, K., et al. (2001). Biomedical Engineering Society (BMES) Bulletin, 25(1), 3.Google Scholar
  2. 2.
    Hufnagel, C. A., & Harvey, W. P. (1953). Bulletin of Georgetown University Medical Center, 6, 60–63.Google Scholar
  3. 3.
    Gott, V. L., Alejo, D. E., & Cameron, D. E. (2003). The Annals of Thoracic Surgery, 76, S2230–S2239.CrossRefGoogle Scholar
  4. 4.
    Murray, G. (1956). Angiology, 7, 466.CrossRefGoogle Scholar
  5. 5.
    Braunwald, N. S., Cooper, T., & Morow, A. G. (1960). Journal of Thoracic and Cardiovascular Surgery, 40, 1–11.Google Scholar
  6. 6.
    Bahnson, H. T., Spencer, F. C., Busse, E. F. G., & Davis, F. W, Jr. (1960). Annals of Surgery, 152, 494.Google Scholar
  7. 7.
    Roe, B. B., Owsley, J. W., & Boudoures, P. C. (1958). Journal of Thoracic and Cardiovascular Surgery, 36, 563–570.Google Scholar
  8. 8.
    Roe, B. B. (1969). Journal of Thoracic and Cardiovascular Surgery, 58, 59–61.Google Scholar
  9. 9.
    Braunwald, N. S., & Morrow, A. G. (1965). Journal of Thoracic and Cardiovascular Surgery, 49, 485–496.Google Scholar
  10. 10.
    DeWall, R. A., Qasim, N., & Carr, L. (2000). The Annals of Thoracic Surgery; 69, 1612–1621.CrossRefGoogle Scholar
  11. 11.
    Gott, V. L., Daggett, R. L., Whiffen, J. D., et al. (1964). Journal of Thoracic and Cardiovascular Surgery, 48, 713–725.Google Scholar
  12. 12.
    Cruz, A. B., Kaster, R. L., Simmons, R. L., & Lillehei, C. W. (1965). Surgery, 58, 995–998.Google Scholar
  13. 13.
    Wada, J., Lomatsu,S., Ikeda, K., et al. (1969). A new hingeless valve. In L. A. Brewer (Eds.), Prosthetic heart valves (pp. 304–314). Springfield: Charles C. Thomas.Google Scholar
  14. 14.
    Björk, V. O. (1969). Journal of Thoracic and Cardiovascular Surgery, 3, 1–10.Google Scholar
  15. 15.
    Carmen, R., & Mutha, S. C. (1972). Journal of Biomedical Materials Research, 6, 327–346.CrossRefGoogle Scholar
  16. 16.
    Björk, V. O. (1974). The surgical treatment of aortic valve disease. Ingelhelm: C.H. Boehringer Sohn.Google Scholar
  17. 17.
    Messmer, B. J., Rothlin, M., & Senning, A. (1973). Journal of Thoracic and Cardiovascular Surgery, 65, 386–390.Google Scholar
  18. 18.
    Gott, V. L., Whiffen, J. D., & Valiathan, S. M. (1968). Annals of the New York Academy of Sciences, 146, 21–29.CrossRefGoogle Scholar
  19. 19.
    Scott, S. M., Sethi, G. K., Bridgman, A. H., & Takaro, T. (1976). The Annals of Thoracic Surgery, 21, 483–486.CrossRefGoogle Scholar
  20. 20.
    Beall, A. C., Jr., Morris, G. C., Jr., Noon, G. P., et al. (1973). The Annals of Thoracic Surgery, 15, 25–34.CrossRefGoogle Scholar
  21. 21.
    Cedars-Sinai Medical center Prosthetic heart valve information, Division of Cardiology: http://www.csmc.edu/pdf/Heart_Valves.pdf
  22. 22.
    Lillehei, C. W., Kaster, R. L., Coleman, M., & Bloch, J. H. (1974). NY State Journal of Medicine, 74, 1426–1438.Google Scholar
  23. 23.
    FDA panel meeting for approval of the OmniCarbon®valve, PMA # P830039, 1998.Google Scholar
  24. 24.
    di Summa, M., Poletti, G., Breno, L., et al. (2002). The Journal of Heart Valve Disease, 11, 517–523Google Scholar
  25. 25.
    Starek, P. J. K., McLaurin, L. P., Wilcox, B. R., & Murry, G. F. (1976). THe Annals of Thoracic Surgery, 22, 362–368.CrossRefGoogle Scholar
  26. 26.
    Starek, P. J. K., Beaudet, R. L., & Hall, V. K. (1987). The medtronic-hall valve:development and clinical expe-rience. In F. A. Crawford (Ed.), Cardiac surgery current heart valve prosthesis (pp. 223–236). Hanley & Belfus, Philadelphia.Google Scholar
  27. 27.
    Food and Drug Administration Enforcement Report, September 7, (1988).Google Scholar
  28. 28.
    Young, W. P., Daggett, R. L., & Gott, V. L. (1969). Long-term follow-up of patients with a hinged leaflet prosthetic heart valve. In L. A. Brewer (Ed.), Prosthetic heart valves (pp. 622–632). Springfield, IL: Charles C. Thomas.Google Scholar
  29. 29.
    Kalke, B. R. (1973). Evaluation of a double-leaflet prosthetic heart valve of a new design for clinical use. Ph.D. thesis, University of Minnesota.Google Scholar
  30. 30.
    Lessons of Björk-Shiley Heart Valve Failure. www.me.utexas.edu/~uer/heartvalves/shiley.html
  31. 31.
    Klawitter, J. J. (1985). Design and in vitro testing of the duromedics bileaflet valve. In First International Hemex Symposium on the Duromedics Bileaflet Valves.Google Scholar
  32. 32.
    Richard, R., Beavan, A., & Strzepa, P. (1994). Journal of Heart Valve Disease, 3, S94–S101.Google Scholar
  33. 33.
    Craver, J. (1999) Carbomedics Prosthetic Heart Valve (tm). European Journal Cardio-Thoracic Surgery, 15(Suppl. 1) S3–Sll.Google Scholar
  34. 34.
    Prosthetic heart valves: History of mechanical heart valve replacement: BMES Bulletin, 24(4).Google Scholar
  35. 35.
    Campbell, A., Baldwin, T., Peterson, G., Bryant, J., & Ryder, K. (1996). Journal of Heart Valve Disease, 5, S124–S132.Google Scholar
  36. 36.
    Lung, B., Haghigat, T., Garbaz, E., et al. (1999) Incidence and predictors of prosthetic thrombosis on mitralbileaflet prostheses during the postoperative period. In Congress of the European Society of Cardiology, August 1999.Google Scholar
  37. 37.
    Bodnar, E., Arru, P., Butchard, E. G., et al. (1996). Panel discussion. Journal of Heart Valve Disease, 5, S148.Google Scholar
  38. 38.
    Gross, J., Shu, M., Dai, F., Ellis, J., & Yoganathan, A. (1996). Journal of Heart Valve Disease, 5, 581–590.Google Scholar
  39. 39.
  40. 40.
    Spronk, H. M. H., van der Voort, D., & ten Cate, H. (2004). Thrombosis Journal, 2, 12. doi: 10.1186/1477-9560-2-12CrossRefGoogle Scholar
  41. 41.
    William, D. F. (Ed.). Definitions in biomaterials. London: Elsevier.Google Scholar
  42. 42.
    Teoh, S. H. (2000). International Journal of Fatigue, 22, 825–837.CrossRefGoogle Scholar
  43. 43.
    Klinger, A., Steinberg, D., Kohavi, D., & Sela, M. N. (1997). Journal of Biomedical Materials Research, 36, 387–392.CrossRefGoogle Scholar
  44. 44.
    BMEn 5001-“cardiovascular” Applications of biomaterials; November 25, 1998-W. Gleason.Google Scholar
  45. 45.
  46. 46.
    Soltys-Robitaille, C. E., Ammon, D. M., Jr., Valint, P. L., Jr., & Grobe III, G. L. (2001). Biomaterials, 22, 3257–3260.CrossRefGoogle Scholar
  47. 47.
    Pesakova, V., Klezl, Z., Balik, K., & Adam, M. (2000). Journal of Material Science: Materials in Medicine, 11(12), 793–798.Google Scholar
  48. 48.
    Bruinsma, G. M., Van der Mei, H. C., & Busscher, H. J. (2001). Biomaterials, 22(3217–322), 4.Google Scholar
  49. 49.
    Ahluwalia, A., Basta, G., Chiellini, F., Ricci, D., & Vozzi, G. (2001). Journal of Material Science: Materials in Medicine, 12(7), 613–619.Google Scholar
  50. 50.
    Bowlin, G. L., & Rittger, S. E. (1997). Cell Transplantation, 6(6), 623–629.Google Scholar
  51. 51.
    Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., Van Aken, W. G., Blauuw, E. H., et al. (1989). Biomaterials, 10, 532–539.CrossRefGoogle Scholar
  52. 52.
    Bruck, S. D. (1975). Polymer, 16, 25.CrossRefGoogle Scholar
  53. 53.
    Bruck, S. D. (1973). Nature, 243, 416–417.CrossRefGoogle Scholar
  54. 54.
    Bruck, S. D. (1967). Journal of Polymer Science, C17, 169–185.Google Scholar
  55. 55.
    Boldz, A., & Schaldach, M. (1990). Artificial Organs, 14(4), 260–269.CrossRefGoogle Scholar
  56. 56.
    Chen, J. Y., Wang, L. P., Fu, K. Y., Huang, N., Leng, Y., Leng, Y. X., et al. (2002). Surface & Coatings Technology, 156, 289–294.CrossRefGoogle Scholar
  57. 57.
  58. 58.
  59. 59.
    Gordon, J. L (1986). In J. P., Cazenave, J. A. Davies, M. D. Kazatchkine, & W. G. van Aken (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). London: Elsevier Science Publishers (Biomedical Division).Google Scholar
  60. 60.
    Williams, S. (1994). Cell Transplantation, 4, 401–410.CrossRefGoogle Scholar
  61. 61.
    Horbett, T. (1994). Colloids and Surface B: Biointerfaces, 2, 225–240.CrossRefGoogle Scholar
  62. 62.
    Tianen, Veli-Matti. (2001). Diamond and Related Materials, 10, 153–160.CrossRefGoogle Scholar
  63. 63.
    Grill, A., & Meyerson. (1994). Development and status of diamondlike carbon. In K. E. Spear & J. P Dismukes (Eds.), Synthetic diamond; emerging CVD science and technology. New York: Wiley.Google Scholar
  64. 64.
    Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21(5), 449–456.CrossRefGoogle Scholar
  65. 65.
    Hauert, R., Knoblauch-Meyer, L., Francz, G., Schroeder, A., & Wintermantel, E. (1999). Surface & Coatings Technology, 120–121, 291–296.CrossRefGoogle Scholar
  66. 66.
    Hauert, R., Muller, U., Francz, G., et al. (1997). Thin Solid Films, 308–309, 191–194.CrossRefGoogle Scholar
  67. 67.
    Dorner-Reisel, A., Schurer, C., Nischan, C., Seidel, O., & Muller, E. (2002). Thin Solid Films, 420–421, 263–268.CrossRefGoogle Scholar
  68. 68.
    Hauert, R., & Muller, U. (2003). Diamond and Related Materials, 12, 171–177.CrossRefGoogle Scholar
  69. 69.
    Huang, N., Yang, P., Leng, Y. X., Wang, J., Chen, J. Y., Sun, H., et al. (2004). Surface modification for controlling the blood-materials interface. In Invited report on 6th Asia Symposium on Biomedical Materials, Chengdu, China. Published in Key Engineering Materials, July 20–23, 2004. http://www.paper.edu.cn/scholar/download.jsp?file=huangnan-6
  70. 70.
    Leng, Y. X., Huang, N., et al. (2003). Surface Science, 531, 177.CrossRefGoogle Scholar
  71. 71.
    Yang, P., Chen, J. Y., Leng, Y. X., Sun, H., Huang, N., & Chu, P. K. (2003) 7th International Workshop on Plasma Based Ion Implantation, San Antonio, USA, September 16–20, 2003.Google Scholar
  72. 72.
    Huang, N., Yang, P., Leng, Y. X., Wang, J., Sun, H., Chen, J. Y., et al. (2004). Surface & Coatings Technology, 186, 218–226.Google Scholar
  73. 73.
    Yang, P., Kwok, S. C. H., Chu, P. K., Leng, Y. X., Chen, J. Y., Wang, J., et al. (2003). Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 206, 721.Google Scholar
  74. 74.
    Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Diamond and Related Materials, 8, 457–462.CrossRefGoogle Scholar
  75. 75.
    Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (2000). Journal of Biomedical Materials Research, 52(2), 413–421.CrossRefGoogle Scholar
  76. 76.
    Dion, I., Roques, X., Baquey, C., Baudet, E., Basse Cathalinat, B., & More, N. (1993). Bio-Medical Materials and Engineering, 3y1, 51–55.Google Scholar
  77. 77.
    Cui, F. Z., & Li, D. J. (2000). Surface & Coatings Technology, 131, 481–487.CrossRefGoogle Scholar
  78. 78.
    Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.CrossRefGoogle Scholar
  79. 79.
    Alanazi, A., Nojiri, C., Noguchi, T., Kido, T., Komatsu, Y., Kirakuri, K., et al. (2000). ASAIO Journal, 46, 440–443.CrossRefGoogle Scholar
  80. 80.
    Thomson, L. A., Law, F. C., Rushton, N., & Franks, J. (1991). Biomaterials, 12, 37.CrossRefGoogle Scholar
  81. 81.
    Allen, M., Law, F., & Rushton, N. (1994). Clin. Mater., 17, 1.CrossRefGoogle Scholar
  82. 82.
    De Scheerder, I., Szilard, M., Yanming, H., et al. (2000). J. Invasive Cardiol., 12(8), 389–394.Google Scholar
  83. 83.
    Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21(5), 449–456.CrossRefGoogle Scholar
  84. 84.
    Francz, G., Schroeder, A., & Hauert, R. (1999). Surface and Interface Analysis, 28, 3.CrossRefGoogle Scholar
  85. 85.
    Hauert, R., Knoblauch-Meyer, L., Francz, G., Schroeder, A., & Wintermantel, E. (1999). Surface & Coatings Technology, 120–121, 291–296.CrossRefGoogle Scholar
  86. 86.
    Hauert, R., Muller, U., Francz, G., et al. (1997). Thin Solid Films, 308–309, 191–194.CrossRefGoogle Scholar
  87. 87.
    Schroeder, A. (1999). Ph.D. Thesis, Dissertation Nr. 13079, ETH Zurich.Google Scholar
  88. 88.
    Dorner-Reisel, A., Schurer, C., Nischan, C., Seidel, O., & Muller, E. (2002). Thin Solid Films, 420–421, 263–268.CrossRefGoogle Scholar
  89. 89.
    Yang, P., Huang, N., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2002). Surface & Coatings Technology, 156, 284–288.CrossRefGoogle Scholar
  90. 90.
    Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., & Huang, N. (2002). P. K. Chu an P. Yang. Biomaterials, 23, 2545–2552.CrossRefGoogle Scholar
  91. 91.
    Leng, Y. X., Sun, H., Yang, P., Chen, J. Y., Wang, J., Wan, G. J., et al. (2001). Thin Solid Films, 398–399, 471–475.CrossRefGoogle Scholar
  92. 92.
    Leng, Y. X., Yang, P., Chen, J. Y., Sun, H., Wang, J., Wang, G. J., et al. (2001). Surface & Coatings Technology, 138, 296–300.CrossRefGoogle Scholar
  93. 93.
    Li, J. (1993). Biomaterials, 14, 229.CrossRefGoogle Scholar
  94. 94.
    Adjaottor, A. A., Ma, E., & Meletis, E. I. (1997). Surface & Coatings Technology, 89(3), 197–203.CrossRefGoogle Scholar
  95. 95.
    Grinnell, F. (1978). International Review of Cytology, 53, 65–144.CrossRefGoogle Scholar
  96. 96.
    Ogwu, A. A., Lamberton, R. W., Morley, S., Maguire, P., & McLaughlin, J. (1999). Physica B, 269, 335–344.CrossRefGoogle Scholar
  97. 97.
    Dementjev, A. P., Petukhov, M. N., & Baranov, A. M. (1998). Diamond and Related Materials, 7, 1534–1538.CrossRefGoogle Scholar
  98. 98.
    Grill, A., Meyerson, B., Patel, V., Reimer, J. A., & Petrich, M. A. (1987). Journal of Applied Physics, 6, 2874.CrossRefGoogle Scholar
  99. 99.
    Constant, L. (1997). Le Normand. Diamond and Related Materials, 6, 664–667.CrossRefGoogle Scholar
  100. 100.
    Baker, M. A., & Hammer, P. (1997). Surface and Interface Analysis, 25, 629–642.CrossRefGoogle Scholar
  101. 101.
    Grinnell, F. (1978). International Review of Cytology, 53, 65–144.CrossRefGoogle Scholar
  102. 102.
    Magill, D. P., Ogwu A. A., McLaughlin J. A. D., & Maguire P. D. (2001). Journal of Vaccum Science and Technology A, 19(5), 2456–2462.Google Scholar
  103. 103.
    Hadjaj, A., Cabarrocas, R. I., & Equar, B. (1997). Philosophical Magazine B, 76, 941.CrossRefGoogle Scholar
  104. 104.
    Hadjaj, A., Favre, M., Equer, B., & Cabaroccas, R. I. (1998). Solar Energy Materials and Solar Cells, 51, 145–153.CrossRefGoogle Scholar
  105. 105.
    Attard, G., & Barnes, C. (1998). Surfaces (pp. 64–65). Oxford: Oxford University Press.Google Scholar
  106. 106.
    Boldz, A., & Schaldach, M. (1990). Artificial Organs, 14(4), 260–269.CrossRefGoogle Scholar
  107. 107.
    Wan, H., Williams, R. L., Doherty, P. J., & Williams, D. F. (1994). Journal of Materials Science Materials in Medicine, 5, 441–445.CrossRefGoogle Scholar
  108. 108.
    Okpalugo, T. I. T., McKenna, E., Magee, A. C., McLaughlin, J. A., & Brown, N. M. D. (2004). Journal of Biomedical Materials Research, Part A, 71A(2), 201–208.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • N. Ali
    • 1
  • Y. Kousa
    • 1
  • J. Gracio
    • 1
  • G. Cabral
    • 1
  • A. Sousa
    • 1
  • T. Shokufar
    • 1
  • E. Titus
    • 1
  • J. C. Madaleno
    • 1
  • W. Ahmed
    • 2
  • M. J. Jackson
    • 3
    Email author
  1. 1.University of AveiroAveiroPortugal
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations