Advertisement

Biomaterial–Cell Tissue Interactions in Surface Engineered Carbon-Based Biomedical Implants and Devices

  • N. Ali
  • Y. Kousa
  • J. Gracio
  • G. Cabral
  • A. Sousa
  • T. Shokufar
  • E. Titus
  • J. C. Madaleno
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

Implantable prosthesis and medical devices are subjected to several interacting forces whenever they come in contact with the physiologic systems (blood, immune, musculoskeletal, nervous, digestive, respiratory, reproductive and urinary) and organs of the human body. These interactions include the effects of core body temperature (and/or variable temperatures in the oral cavity), the body physiologic fluids containing several ions and biomolecules, proteins and cells of various progeny and functions. This chapter focuses on cell tissue–implant interactions and how carbon-based implants are being developed for next-generation implantable devices.

Keywords

Cell interactions Tissue Medical devices Carbon Nanotechnology 

References

  1. 1.
    Bittl, J. A. (1996). Advances in coronary angioplasty. New England Journal of Medicine, 335, 1290–1302.Google Scholar
  2. 2.
    Gawaz, M., Neumann, F. J., Ott, I., May, A., & Schomig, A. (1996). Circulation, 94, 279–285.Google Scholar
  3. 3.
    Inoue, T., Sakai, Y., Fujito, T., Hoshi, K., Hayashi, T., Takayanagi, K., et al. (1996). Circulation, 94, 1518–1523.Google Scholar
  4. 4.
    Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Journal of Materials Science: Materials in Medicine, 10, 443–448.Google Scholar
  5. 5.
    Haycox, C. L., & Ratner, B. D. (1993). Journal of Biomedical Materials Research, 27, 1181–1193.Google Scholar
  6. 6.
    Courtney, J. M., Lamba, N. M. K., Sundaram, S., & Forbes, C. D. (1994). Biomaterials, 15, 737–744.Google Scholar
  7. 7.
    Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.Google Scholar
  8. 8.
    Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, et al. (2000) Infusionstherapie und Transfusionmedizin, 27(4), 200–206.Google Scholar
  9. 9.
    Yang, Y. (1996). S. F Franzen, C.L Olin. Cells and Materials, 6(4), 339–354.Google Scholar
  10. 10.
    Yang, Y., Franzen, S. F., & Olin, C. L. (1996). The Journal of Heart Valve Disease, 5, 532–537.Google Scholar
  11. 11.
    Bittl, J. A. (1996). Subacute stent occlusion: Thrombus horribilis. JACC, 28, 368–370.Google Scholar
  12. 12.
    Mark, K., Belli, G., Ellis, S., & Moliterno, D. (1996). Journal of the American College of Cardiology, 27, 494–503.Google Scholar
  13. 13.
    Colombo, A., Hall, P., Nakamura, S., Almagor, Y., Maiello, L., Martini, G., et al. (1995). Circulation, 91, 1676–1688.Google Scholar
  14. 14.
    Gott, V. L., Koepke, D. E., Daggett, R. L., Zarnstorff, W., & Young, W. P. (1961). The coating of intravascular plastic prostheses with colloidal graphite. Surgery, 50, 382–389.Google Scholar
  15. 15.
    Haubold, A. (1977). Annals of the New York Academy of Sciences, 283, 383.Google Scholar
  16. 16.
    Goodman, S. L., Tweden, K. S., & Albrecht, R. M. (1996). Platelet interaction with pyrolytic carbon heart-valve leaflets. Journal of Biomedical Materials Research, 32, 249–258.Google Scholar
  17. 17.
    Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.Google Scholar
  18. 18.
    Williams, D. F. (1989). Journal of Biomedical Engineering, 11, 185.Google Scholar
  19. 19.
    Salzman, E. (Ed.). (1981). Interaction of blood with natural and artificial surfaces. New York: Marcel Dekker.Google Scholar
  20. 20.
    Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, & W.G. van Aken (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).Google Scholar
  21. 21.
    Cenni, E., Arciola, C. R., Ciapetti, G., Granchi, D., Savarino, L., Stea, S., et al. (1995). Biomaterials, 16, 973–976.Google Scholar
  22. 22.
    Herring, M. B., Gardner, A. & Gloves, J. A. (1978). Surgery, 84, 498.Google Scholar
  23. 23.
    Remy, M., Bordenave, L., Bareille, R., Rouais, F., Baquey, C., Gorodkov, A., et al. (1994). Journal of Materials Science Materials in Medicine, 5, 808.Google Scholar
  24. 24.
    Pesakova, V., Klezl, Z., Balik, K., & Adam, M. (2000). Journal of Material Science: Materials in Medicine, 11, p797.Google Scholar
  25. 25.
    Hallab, N. J., Bundy, K. J., O’Connor, K., Clark, R., & Moses, R. L. (1995) Journal of Long-Term Effects of Medical Implants, 5, 209.Google Scholar
  26. 26.
    Ahluwalia, A., Basta, G., Chiellini, F., Ricci, D., & Vozzi, G. (2001). Journal of Material Science: Materials in Medicine, 12, 613–619.Google Scholar
  27. 27.
    Bowlin, G. L., & Rittger, S. E. (1997). Cell Transplantation, 6, 623.Google Scholar
  28. 28.
    Altankov, G., & Grott, T. (1997). Journal of Biomaterials Science, Polymer Edition, 8, 299.Google Scholar
  29. 29.
    Grinnell, F. (1978). International Review of Cytology, 53, p65.Google Scholar
  30. 30.
    Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.Google Scholar
  31. 31.
    Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.Google Scholar
  32. 32.
    McLaughlin, J., Meenan, B., Maguire, P., & Jamieson, N. (1996). Properties of diamond like carbon thin film coatings on stainless steel medical guidewires. Diamond and Related Materials, 8, 486–491.Google Scholar
  33. 33.
    Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Hemocompatibility of DLC and TiC-TiN interlayers in titanium. Diamond and Related Materials, 8, 457–462.Google Scholar
  34. 34.
    Okpalugo, T. I. T., Ogwu, A. A., Maguire, P., & McLaughlin, J. A. D. (2001). Technology and health care. International Journal of Health Care Engineering, 9(1–2), 80–82.Google Scholar
  35. 35.
    Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & Hirst, D. G. (2004). In-vitro blood compatibility of a-C:H: Si and a-C: H thin films. Diamond and Related Materials, 13(4–8), 1088–1092.Google Scholar
  36. 36.
    Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., & McLaughlin, J. A. (2004). Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials, 25(3), 239–245.Google Scholar
  37. 37.
    Okpalugo, T. I. T., McKenna, E., Magee, A. C., McLaughlin, J. A., & Brown, N. M. D. (2004). The MTT assays of bovine retinal pericytes and human microvascular endothelial cells on DLC and Si-DLC-coated TCPS. Journal of Biomedical Materials Research, Part A, 71A(2), 201–208.Google Scholar
  38. 38.
    Okpalugo, T. I. T., Maguire, P. D., Ogwu, A. A., & McLaughlin, J. A. (2004). The effect of silicon doping and thermal annealing on the electrical and structural properties of hydrogenated amorphous carbon thin films. Diamond and Related Materials, 13(4–8), 1549–1552.Google Scholar
  39. 39.
    Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & McCullough, R. W. (2006). Human micro-vascular endothelial cellular interaction with atomic N-doped compared to Si-doped DLC. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78B(2), 222–229.Google Scholar
  40. 40.
    Okpalugo, T. I. T. (2002). The hemocompatibility of ultra-smooth silicon and nitrogen doped hydrogenated amorphous carbon thin films—The role of the microstructure, electrical properties, and surface energy (G2c., Ph.D., Ulster, 53-4066). (BL: DXN062999).Google Scholar
  41. 41.
    Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.Google Scholar
  42. 42.
    Dion, I., Roques, X., Baquey, C., Baudet, E., Basse Cathalinat, B., & More, N. (1999). Biomedical Materials and Engineering, 3, 51–55 (spring).Google Scholar
  43. 43.
    O’Leary, A., Bowling, D. P., Donnelly, K., O’Brien, T. P., Kelly, T. C., Weill, N., et al. (1995). Key Engineering Materials, 99–100, 301–308.Google Scholar
  44. 44.
    Freitas, R. A., IMM report number 12. http://www.imm.org/reports/rep012.html
  45. 45.
    Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.Google Scholar
  46. 46.
    Allen, M. J., Myer, B. J., Law, F. C., & Rushton, N. (1995). Transaction of Orthopaedic Research Society, 20, 489.Google Scholar
  47. 47.
    Szent-Gyorgyi, A. (1957). Bioenergetics. New York: Academic Press.Google Scholar
  48. 48.
    Szent-Gyorgyi, A. (1946). Nature, 157, 875.Google Scholar
  49. 49.
    Eley, D. D., Parfitt, G. D., Perry, M. J., & Taysum, D. H. (1953). Transactions of the Faraday Society, 49, 79.Google Scholar
  50. 50.
    Postow, E., & Rosenberg, B. (1970). Bioenergetics, 1, 467.Google Scholar
  51. 51.
    Bruck, S. D. (1965). Polymer, 6, 319.Google Scholar
  52. 52.
    Bruck, S. D. (1967). Journal of Polymer Science Part C, 17, 169.Google Scholar
  53. 53.
    Bruck, S. D. (1973). Intrinsic semiconduction, electronic conduction of polymers and blood compatibility. Nature, 243, 416–417.CrossRefGoogle Scholar
  54. 54.
    Bruck, S. D. (1975). The role of electrical conduction of macromolecules in certain biomedical problems. Polymer, 16, 25.Google Scholar
  55. 55.
    Van Oss, C. J. (1978). Phagocytosis as a surface phenomenon. Annual Review of Microbiology, 32, 19–39.Google Scholar
  56. 56.
    Kochwa, S., Litwak, R. S., Rosenfield, R. E., & Leonard, E. F. (1977). Annals of New York Academy of Sciences, 283, 37.Google Scholar
  57. 57.
    Lettington, A. H. (1991). Applications of diamond films and related materials. In Y. Tzeng, et al (Ed.), Materials science monographs (Vol. 73, p. 703). New York: Elsevier.Google Scholar
  58. 58.
    Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.Google Scholar
  59. 59.
    Grill, A. (1999). Diamond and Related Materials, 8, 428.Google Scholar
  60. 60.
    Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.Google Scholar
  61. 61.
    Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, P., et al. (2000). Infusionstherapie und Transfusionmedizin, 27(4), 200–206.Google Scholar
  62. 62.
    Zheng, C., Ran, J., Yin, G., & Lei, W. (1991). In Y. Tzeng, et al (Ed.), Applications of diamond films and related materials, materials science monographs (Vol. 73, p. 711). New York: Elsevier.Google Scholar
  63. 63.
    Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (2000). Journal of Biomedical Materials Research, 52(2), 413–421.Google Scholar
  64. 64.
    Alanazi, A., Nojiri, C., Noguchi, T., et al. (2000). ASAIO Journal, 46(4), 440–443.Google Scholar
  65. 65.
    Alanazi, A., Nojiri, C., Noguchi, T., Ohgoe, Y., Matsuda, T., Hirakuri, K., et al. (2000). Artificial Organs, 24(8), 624–627.Google Scholar
  66. 66.
    Bangali, Z., & Shea, L. D. (2005). MRS Bulletin, 30(9), 659.Google Scholar
  67. 67.
    Morrison, M. L., Buchanan, R. A., Liaw, P. K., Berry, C. J., Brigmon, R. L., Riester, L., et al. (2006). Electrochemical and antimicrobial properties of diamond like carbon-metal composite films. Diamond and Related Materials, 15(1), 138–146.Google Scholar
  68. 68.
    Maizza, G., Saracco, G., & Abe, Y. (1999). Advances in science and technology. In Vincenzini, P. (Eds.), 9th Cimetec-World Forum on New Materials, Faenza (pp. 75–82).Google Scholar
  69. 69.
    Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.Google Scholar
  70. 70.
    Tiainen, V. M. (2001). Diamond and Related Materials, 10, 153–160.Google Scholar
  71. 71.
    Butter, R. S., & Lettington, A. H. (1995). DLC for biomedical applications (reviews). Journal of Chemical Vapor Deposition, 3, 182–192.Google Scholar
  72. 72.
    Higson, S. P. J., & Vadgama, P. M. (1995). Analytica Chemica Acta, 300, 77–83.Google Scholar
  73. 73.
    Higson, S. P. J., & Vadgama, P. M. (1995). Biosensors and Bioelectronics, 10(5), VIII.Google Scholar
  74. 74.
    Du, C., Su, X. W., Cui, F. Z., & Zhu, X. D. (1998). Biomaterials, 19, 651–658.Google Scholar
  75. 75.
    Cui, F. Z., & Li, D. J. (2000). Surface Coatings Technology, 131, 481–487.Google Scholar
  76. 76.
    Ivanov-Omskii, V. I., Panina, L. K., & Yastrebov, S. G. (2000). Carbon, 38, 495–499.Google Scholar
  77. 77.
    Dyuzhev, G. A., Ivanov-Omskii, V. I., Kuznetsova, E. K., Rumyantsev, V. D., et al (1996). Journal of Molecular Materials, 8, 103–106.Google Scholar
  78. 78.
    Ivanov-Omskii, V. I., Tolmatchev, A. V., & Yastrebov, S. G. (1996). Philosophical Magazine Part B, 73(4), 715–722.Google Scholar
  79. 79.
    Andrade, J. D. (Ed.). (1988). Surface and interfacial aspect of biomedical polymers. Protein Adsorption (Vol. 2). New York: Plenum.Google Scholar
  80. 80.
    William, D. F. (1985). Physiological and microbiological corrosion CRC Crit (review). Biocompatibility, 1, 1–30.Google Scholar
  81. 81.
    William, D. F. (Ed.) (1987). Definitions in biomaterials. Amsterdam: Elsevier.Google Scholar
  82. 82.
    William, D. F. (1981). Systemic aspects of biocompatibility (Vol. 1–2). Boca Raton: CRC Press.Google Scholar
  83. 83.
    Martini, F. C. (2001). Fundamentals of anatomy and physiology (5th ed.). New Jersey, USA: Prentice Hall.Google Scholar
  84. 84.
    Hoffman, A. S. (1982). Advances in Chemistry Series, 199, 3.Google Scholar
  85. 85.
    Vroman, L. (1977). Annals of the New York Academy of Science, 283, 65 (L. Vroman & E. F. Leonard (Eds.)).Google Scholar
  86. 86.
    National Heart, Lung, and Blood Institute (NHBLI). (1980). Clinical Guidelines for Biocompatibility. Washington D.C., USA.Google Scholar
  87. 87.
    Neumann, A. W., Absolom, D. R., Francis, D. W., Omenyi, S. N., Spelt, J. K., Policova, Z., et al. (1983). Annals of the New York Academy of Sciences, 416, 276.Google Scholar
  88. 88.
    Srinivasan, S., & Sawyer, P. N. (1970). Journal of Colloid and Interface Science, 32(3), 456.Google Scholar
  89. 89.
    Sawyer, P. N., & Pate, J. W. (1953). American Journal of Physiology, 175, 113.Google Scholar
  90. 90.
    Sawyer, P. N., & Srinavasan, S. (1967). American Journal of Physiology, 114, 42.Google Scholar
  91. 91.
    Srinivasan, S., & Sawyer, P. N. (1969). JAAMI, 3, 116.Google Scholar
  92. 92.
    Martin, J. G., Afshar, A., Kaplitt, M. J., Chopra, P. S., Srinivasan, S., & Sawyer, P. N. (1968). Implantation studies with some non-metallic prostheses. Transaction of American Society for Artificial Internal Organ, 14, 78.Google Scholar
  93. 93.
    Wilcox, C. D., Dove, S. B. McDavid, W. D., & Greer, D. B., Imagetool. http://ddsdx.uthscsa.edu/dig/itdesc
  94. 94.
    Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.Google Scholar
  95. 95.
    Baier, R. E., Loeb, G. I., & Wallace, G. T. (1971). Federation Proceedings, 30, 1523–1538.Google Scholar
  96. 96.
    Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., Huang, N., Chu, P. K., et al. (2002). Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti (Ta + 5)O2 thin films. Biomaterials, 23, 2545.Google Scholar
  97. 97.
    Curtis, A. (2004). Tutorial on the biology of nanotopography. IEEE Transactions on Nanobioscience, 3(4), 293–295.MathSciNetGoogle Scholar
  98. 98.
    Matsuda, T., & Kurumatani, H. (1990). Surface induced in vitro angiogenesis: Surface property is a determinant of angio-genesis. ASAIO Transactions, 36, M565–M568.Google Scholar
  99. 99.
    Hubbell, J. A., Massia, S. P., & Drumheller, P. D. (1992). Surface-grafted cell-binding peptides in tissue engineering of vascular graft. Annals of the New York Academy of Sciences, 665, 253–258.Google Scholar
  100. 100.
    Goodman, S. L., Lelah, M. D., Lambrecht, L. K., Cooper, S. L., & Albrecht, R. M. (1984). Scanning Electron Microscopy, 1, 279.Google Scholar
  101. 101.
    Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.Google Scholar
  102. 102.
    Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.Google Scholar
  103. 103.
    Hauert, R., Muller, U., Francz, G., Birchler, F., Schroeder, A., Mayer, J., et al. (1997). Thin Solid Films, 308–309, 191–194.Google Scholar
  104. 104.
    Allen, M., Butter, R., Chandra, L., Lettington, A., & Rushton, N. (1995). Biomedical Materials and Engineering, 5(3), 151–159.Google Scholar
  105. 105.
    McColl, I. R., Grant, D. M., Green, S. M., et al. (1993). Diamond and Related Materials, 3, 83.Google Scholar
  106. 106.
    Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.Google Scholar
  107. 107.
    Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1994). Diamond and Related Materials, 3, 1120–1123.Google Scholar
  108. 108.
    Thomson, L. A., Law, F. C., Rushton, N., & Franks, J. (1991). Biomaterials, 12, 37–40.Google Scholar
  109. 109.
    Allen, M., Myer, B., & Rushton, N. J. (2001). Journal of Biomedical Materials Research, 58(3), 319–328.Google Scholar
  110. 110.
    Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21, 449–456.Google Scholar
  111. 111.
    Lu, L., Jones, M. W., & Wu, R. L. C. (1993). Biomedical Materials and Engineering, 3, 223.Google Scholar
  112. 112.
    Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.Google Scholar
  113. 113.
    Ames, B. N., McCann, J., & Yamasaki, E. (1975). Mutation Research, 31, 347–367.Google Scholar
  114. 114.
    Bruck, S. D. (1977). Biomaterials, Medical Devices, and Artificial Organs, 5(1).Google Scholar
  115. 115.
    McHargue, C. J. (1991). In: Y. Tzeng et al. (Eds.), Application of diamond films and related materials, materials science monographs (p. 113). New York: Elsevier.Google Scholar
  116. 116.
    Devlin, D., et al. (1997). In: B. Simons (Ed.), Proceedings of the ASME International Mechanical Engineering Congress and Exposition (p. 265), Fairfield, NJ, USA: Bioengineering Division.Google Scholar
  117. 117.
    Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, van Aken, W. G. (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).Google Scholar
  118. 118.
    Moncada, S., & Vane, J. R. (1982). The role of prostaglandins in platelet-vessel wall interactions. In H. L. Nossel & H. J. Vogel (Eds.), Pathobiology of endothelial cells (pp. 253–285). New York: Academic Press.Google Scholar
  119. 119.
    Gimbrone, M. A., Jr. (1986). In M. A. Gimbrone Jr. (Ed.), Vascular endothelium in hemostasis and thrombosis (pp.1–13). Edinburgh: Churchill Livingstone.Google Scholar
  120. 120.
    Gimbrone, M. A, Jr. (1987). Annals of New York Acad. Sci., 516, 5–11.Google Scholar
  121. 121.
    Chan, T. K., & Chan, V. (1981). Antithrombin III, the major modulator of intravascular coagulation is synthesised by human endothelial cells. Thrombosis and Haemostasis, 46(1981), 504–506.Google Scholar
  122. 122.
    Busch, C., Ljungman, C., Heldin, C.-M., Waskson, E., & Obrink, B. (1979). Surface properties of cultured endothelial cells. Haemostasis, 8(1979), 142–148.Google Scholar
  123. 123.
    Jaffe, E. A. (1982). Synthesis of factor VIII by endothelial cells. Annals of New York Academy of Sciences, 401(1982), 163–170.Google Scholar
  124. 124.
    Mosher, D. F., Doyle, M. J., & Jaffe, E. A. (1982). Secretion and synthesis of thrombospondin by cultured human endothelial cells. Journal of Cell Biology, 93(1982), 343.Google Scholar
  125. 125.
    Folkman, J., & Haudenschild, C. (1980). Angiogenesis in vitro. Nature, 288, 551–556.Google Scholar
  126. 126.
    Tonnesen, M. G., Smedly, L. A., & Henson, P. M. (1984). The Journal of Clinical Investigation, 74, 1581–1592.Google Scholar
  127. 127.
    Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589–1598.Google Scholar
  128. 128.
    Pauli, B., & Lee, C. (1988). Laboratory Investigation, 58, 379–387.Google Scholar
  129. 129.
    Picker, L. J., Nakache, M., & Butcher, E. C. (1989). Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. Journal of Cell Biology, 109(2), 927–937.Google Scholar
  130. 130.
    Pober, J. (1988). American Journal of Pathology, 133, 426–433.Google Scholar
  131. 131.
    Berg, E. L., Goldstein, L. A., Jutila, M. A., Nakache, M., Picker, L. J., Streeter, P. R., et al. (1989). Immunological Reviews, 108, 1–18.Google Scholar
  132. 132.
    Rice, G. E., & Bevilacqua, M. P. (1989). Science, 246, 1303–1306.Google Scholar
  133. 133.
    Springer, T. (1990). Nature, 346, 425–433.Google Scholar
  134. 134.
    Hynes, R. (1992). Cell, 69, 11–25.Google Scholar
  135. 135.
    Folkman, J., Haudenschild, C., & Zetter, B. R. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76, 5217.Google Scholar
  136. 136.
    Keegan, A., Hill, C., Kumar, S., Phillips, P., Schof, A., & Weiss, J. (1982). Journal of Cell Science, 55, 261.Google Scholar
  137. 137.
    Charo, I., Karasek, M. A., Davison, P. M., & Goldstein, I. M. (1984). Journal of Clinical Investigation, 74, 914.Google Scholar
  138. 138.
    Gerritsen, M. E. (1987). Biochemical Pharmacology, 36, 2701–2711.Google Scholar
  139. 139.
    Fujimoto, T., & Singer, S. J. (1988). Journal of Histochemistry and Cytochemistry, 36, 1309–1317.Google Scholar
  140. 140.
    Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589.Google Scholar
  141. 141.
    Ades, E. W., Candal, F., Swerlick, J., George, R. A., Summers Susan, V. G., Bosse, D. C., et al. (1992). Journal of Investigative Dermatology, 99, 683–690.Google Scholar
  142. 142.
    Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.Google Scholar
  143. 143.
    Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.Google Scholar
  144. 144.
    Kaukonen, M., Nieminen, R. M., Poykko, S., & Settsonen, A. (1999). Nitrogen doping of amorphous carbon surfaces. Physical Review Letters, 83(25), 5346–5349.Google Scholar
  145. 145.
    Ganong, W. F. (1995). Ganong’s review of medical physiology (17th ed.). New York: Appleton & Lang.Google Scholar
  146. 146.
    Chen, J. Y., Wang, L. P., Fu, K. Y., Huang, N., Leng, Y., Leng, Y. X., et al. (2002). Surface and Coatings Technology, 156, 289–294.Google Scholar
  147. 147.
    Krishnan, L. K., Varghese, N., Muraleedharan, C.V., Bhuvaneshwar, G.S., Derangere, F., Sampeur, Y., et al. (2002). Biomolecular Engineering, 1–3.Google Scholar
  148. 148.
    Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.Google Scholar
  149. 149.
    Ogwu, A. A., Lamberton, R. W., McLaughlin, J. A., & Maguire, P. D. (1999). Journal of Physics Part D. Applied Physics, 32, 981.Google Scholar
  150. 150.
    Jiu, J. T., Wang, H., Cao, C. B., & Zhu, H. S. (1999). Journal Materials Science, 34, 5205–5209.Google Scholar
  151. 151.
    Dementjev, A. P., Petukhov, M. N., & Baranov, A. M. (1998). Diamond and Related Materials, 7, 1534–1538.Google Scholar
  152. 152.
    Dementjev, A. P., & Petukhov, M. N. (1997). Diamond and Related Materials, 6, 486.Google Scholar
  153. 153.
    Grill, A., Meyerson, B., Patel, V., Reimer, J. A., & Petrich, M. A. (1987). Journal of Applied Physics, 61, 2874.Google Scholar
  154. 154.
    Miyake, S., Kaneko, R., Kikuya, Y., & Sugimoto, I. (1991). Transactions of the ASME Journal of Tribology, 113, 384.Google Scholar
  155. 155.
    Baker, M. A., & Hammer, P. (1997). Surface and Interface Analysis, 25, 629–642.Google Scholar
  156. 156.
    Demichelis, F., Pirri, C. F., & Tagliaferro, A. (1992). Materials Science and Engineering B, 11, 313–316.Google Scholar
  157. 157.
    Li, D. J., Cui, F. Z., Gu, H. Q., & Adhesion, J. (1999). Sci. Technol., 13, 169.Google Scholar
  158. 158.
    Linder, S., Pinkowski, W., & Aepfelbacher, M. (2002). Biomaterials, 23, 767–773.Google Scholar
  159. 159.
    Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1991). Journal of Biomaterials Science, Polymer Edition, 2(2), 147–159.Google Scholar
  160. 160.
    Tangen, D., Berman, H. J., & Marfey, P. (1971). Thrombosis et Diathesis Haemorrhagica, 25, 268.Google Scholar
  161. 161.
    Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1988). Cell Biophysics, 13, 75.Google Scholar
  162. 162.
    Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1985). In Y. Nose, C. Kjellstrand, & P. Ivanovich (Eds.) Progress in artificial organs (pp. 1050–1055). Cleveland, OH: ISAO Press.Google Scholar
  163. 163.
    Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1986). Journal of Biomedical Materials Research, 20, 773.Google Scholar
  164. 164.
    Grinnell, F. (1987). Annals of the New York Academy of Sciences, 516, 280.Google Scholar
  165. 165.
    Grinnell, F. (1986). Journal of Cell Biology, 103, 2697.Google Scholar
  166. 166.
    Feuerstein, I. A. (1987). Annals of the New York Academy of Sciences, 516, 484Google Scholar
  167. 167.
    Park, K., & Park, H. (1989). Scanning Microscopy, 3(Suppl), 137.Google Scholar
  168. 168.
    Pitt, W. G., Spiegelberg, S. H., & Cooper, S. L. (1987). Transactions of the Society for Biomaterials, 10, 59.Google Scholar
  169. 169.
    Park, K., Mosher, D. F., & Cooper, S. L. (1985). Journal of Biomedical Materials Research, 20, 589.Google Scholar
  170. 170.
    Brash, J. L. (1985). Macromolecular Chemistry, 9(Suppl), 69.Google Scholar
  171. 171.
    Lambrecht, L. K., Young, B. R., Stafford, R. E., Park, K., Albrecht, R. M., Mosher, D. F., et al. (1986). Thrombosis Research, 41, 99.Google Scholar
  172. 172.
    Wildner, O., Lipkow, T., & Knop, J. (1992). Increased expression of ICAM-1, E-selectin and V-CAM-1 by cultured endothelial cells upon exposure to haptens. Experimental Dermatology, 1, 191.Google Scholar
  173. 173.
    Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.Google Scholar
  174. 174.
    Albelda, S., Smith, C., & Ward, P. (1994). Adhesion molecules and inflammatory injury. FASEB Journal, 8, 504–512.Google Scholar
  175. 175.
    Gerdes, J., Schwab, U., Lemke, H., & Stein, H. (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International Journal of Cancer, 31(1), 13–20.Google Scholar
  176. 176.
    Thomas, W. E. (1999). Brain Research Reviews, 31(1), 42–57.Google Scholar
  177. 177.
  178. 178.
    Chen, X., & Zuckerman, S. T. (2005). Weiyuan John Kao. Intracellular protein phosphorylation in adherent U937 monocytes mediated by various culture conditions and fibronectin-derived surface ligands. Biomaterials, 26(8), 873–882.Google Scholar
  179. 179.
    Fournier, J. A., Calabuig, J., Merchán, A., Augé, J. M., Melgares, R., Colman, T., et al. (2001). Revista Espanola de Cardiologia, 54(5), 567–572.Google Scholar
  180. 180.
    De Scheerder, I., Szilard, M., Yanming, H., Ping, X. B., Verbeken, E., Neerinck, D., et al. (2000). The Journal of Invasive Cardiology, 12(8), 389–394.Google Scholar
  181. 181.
    Tran, H. S., Puc, M. M., Hewitt, C. W., Soll, D. B., Marra, S. W., Simonetti, V. A., et al. (1999). Journal of Investigative Surgery: The Official Journal of the Academy of Surgical Research, 12(3), 133–140.Google Scholar
  182. 182.
  183. 183.
    Izzard, C. S., & Lochner, L. R. (1976). Cell-to-substrate contacts in living fibroblasts: An interference reflection study with an evaluation of the technique. Journal of Cell Science, 21, 129.Google Scholar
  184. 184.
    Bereiter-Hahn, J., Fox, C. H., & Thorell, B. (1979). Quantitative reflection contrast microscopy of living cells. Journal of Cell Biology, 82, 767–779.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • N. Ali
    • 1
  • Y. Kousa
    • 1
  • J. Gracio
    • 1
  • G. Cabral
    • 1
  • A. Sousa
    • 1
  • T. Shokufar
    • 1
  • E. Titus
    • 1
  • J. C. Madaleno
    • 1
  • W. Ahmed
    • 2
  • M. J. Jackson
    • 3
    Email author
  1. 1.University of AveiroAveiroPortugal
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations