Wayfinding and Cognitive Maps for Pedestrian Models

  • Erik AndresenEmail author
  • David Haensel
  • Mohcine Chraibi
  • Armin Seyfried
Conference paper


Usually, routing models in pedestrian dynamics assume that agents have fulfilled and global knowledge about the building’s structure. However, they neglect the fact that pedestrians possess no or only parts of information about their position relative to final exits and possible routes leading to them. To get a more realistic description we introduce the systematics of gathering and using spatial knowledge. A new wayfinding model for pedestrian dynamics is proposed. The model defines for every pedestrian an individual knowledge representation implying inaccuracies and uncertainties. In addition, knowledge-driven search strategies are introduced. The presented concept is tested on a fictive example scenario.


Traffic Flow Model Tactical Level Exit Area Actual Room Short Path Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is founded by the Deutsche Forschungsgemeinschaft (DFG) contract No. GZ: SE 17894-1.


  1. 1.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, New York, NY (2009)CrossRefGoogle Scholar
  2. 2.
    Crociani, L., Invernizzi, A., Vizzari, G.: A hybrid agent architecture for enabling tactical level decisions in floor field approaches. Transp. Res. Procedia 2, 618–623 (2014)CrossRefGoogle Scholar
  3. 3.
    Wagoum, A.U.K.: Route choice modelling and runtime optimisation for simulation of building evacuation. Schriften des Forschungszentrums Jülich 17 (2013)Google Scholar
  4. 4.
    Wiener, J.M., Büchner, S.J., Hölscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spat. Cogn. Comput. 9(2), 152–165 (2009)Google Scholar
  5. 5.
    Kneidl, A.: Methoden zur abbildung menschlichen navigationsverhaltens bei der modellierung von fußgängerströmen. Ph.D. thesis, Technische Universität München (2013)Google Scholar
  6. 6.
    O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)Google Scholar
  7. 7.
    Moser, E.I., Kropff, E., Moser, M.B.: Place cells, grid cells, and the brain’s spatial representation system. Ann. Rev. Neurosci. 31, 69–89 (2008)CrossRefGoogle Scholar
  8. 8.
    Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., Fried, I.: Cellular networks underlying human spatial navigation. Nature 425(6954), 184–188 (2003)CrossRefGoogle Scholar
  9. 9.
    Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55(4), 189–208 (1948)CrossRefGoogle Scholar
  10. 10.
    Golledge, R.G., Jacobson, R.D., Kitchin, R., Blades, M.: Cognitive maps, spatial abilities, and human wayfinding. Geogr. Rev. Jpn. Ser. B 73(2), 93–104 (2000)CrossRefGoogle Scholar
  11. 11.
    Ellard, C.: You Are Here: Why We Can Find Our Way to the Moon, But Get Lost in the Mall. Knopf Doubleday Publishing Group (2009)Google Scholar
  12. 12.
    Anderson, J.R.: Cognitive Psychology and Its Implications, 7th edn. Worth Publishers, New York (2010)Google Scholar
  13. 13.
    St. Pierre, M., Hofinger, G.: Human Factors und Patientensicherheit in der Akutmedizin, 3. aufl. edn. Springer, Berlin (2014)Google Scholar
  14. 14.
    Schröder, B., Haensel, D., Chraibi, M., Arnold, L., Seyfried, A., Andresen, E.: Knowledge- and Perception-based route choice modelling in case of fire. In: 6th International Symposium on Human Behaviour in Fire 2015, pp. 327–338. Interscience Communications Limited (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Erik Andresen
    • 1
    Email author
  • David Haensel
    • 2
  • Mohcine Chraibi
    • 2
  • Armin Seyfried
    • 1
    • 2
  1. 1.Faculty of Architecture and Civil EngineeringBergische Universität WuppertalWuppertalGermany
  2. 2.Jülich Supercomputing CenterForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations