Advertisement

Modeling of Lithiation in Silicon Electrodes

  • Feifei FanEmail author
  • Ting Zhu
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 245)

Abstract

Energy is the lifeblood of modern society. Lithium-ion batteries are critically important for portable electronics, electric vehicles, and grid-level energy storage. Silicon is a promising high-capacity electrode material for next-generation lithium-ion batteries. However, it is prone to electrochemically induced mechanical degradation that can consume active lithium and result in fast capacity fade. In this chapter, we present the continuum and atomistic models of deformation and stress generation during electrochemical lithiation of silicon particles and thin films. The associated simulation results are compared with in situ and ex situ experiments, thus providing insights into electrochemically driven mechanical degradation in silicon electrodes.

Keywords

Biaxial Compression Hydrostatic Tension Angular Distribution Function Modify Embed Atomic Method Steady State Flow Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)CrossRefGoogle Scholar
  2. 2.
    L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4(9), A137–A140 (2001)CrossRefGoogle Scholar
  3. 3.
    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRefGoogle Scholar
  4. 4.
    R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)CrossRefGoogle Scholar
  5. 5.
    X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011)CrossRefGoogle Scholar
  6. 6.
    X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2), 1522–1531 (2012)CrossRefGoogle Scholar
  7. 7.
    X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V. Davydov, S.X. Mao, S.T. Picraux, S. Zhang, J. Li, T. Zhu, J.Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7(11), 749–756 (2012)CrossRefGoogle Scholar
  8. 8.
    M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th Anniversary Article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4984 (2013)CrossRefGoogle Scholar
  9. 9.
    J.W. Wang, Y. He, F. Fan, X.H. Liu, S. Xia, Y. Liu, C.T. Harris, H. Li, J.Y. Huang, S.X. Mao, T. Zhu, Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13(2), 709–715 (2013)CrossRefGoogle Scholar
  10. 10.
    V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195(15), 5062–5066 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Wang, F. Fan, J. Wang, H. Wang, S. Tao, A. Yang, Y. Liu, H.B. Chew, S.X. Mao, T. Zhu, S. Xia, High damage tolerance of electrochemically lithiated silicon. Nat. Commun. 6, 8417 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Ting, Mechanics of high-capacity electrodes in lithium-ion batteries. Chin. Phys. B 25(1), 014601 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Huang, F. Fan, J. Li, S.L. Zhang, T. Zhu, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61, 4354–4364 (2013)CrossRefGoogle Scholar
  14. 14.
    F. Fan, S. Huang, H. Yang, M. Raju, D. Datta, V.B. Shenoy, A.C.T. van Duin, S. Zhang, T. Zhu, Mechanical properties of amorphous LixSi alloys: a reactive force field study. Model. Simul. Mater. Sci. Eng. 21(7), 074002 (2013)CrossRefGoogle Scholar
  15. 15.
    X.H. Liu, Y. Liu, A. Kushima, S.L. Zhang, T. Zhu, J. Li, J.Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2(7), 722–741 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Hertzberg, J. Benson, G. Yushin, Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films. Electrochem. Commun. 13(8), 818–821 (2011)CrossRefGoogle Scholar
  17. 17.
    M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107(4), 045503 (2011)CrossRefGoogle Scholar
  18. 18.
    S.K. Soni, B.W. Sheldon, X.C. Xiao, M.W. Verbrugge, D. Ahn, H. Haftbaradaran, H.J. Gao, Stress mitigation during the lithiation of patterned amorphous Si islands. J. Electrochem. Soc. 159(1), A38–A43 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Kushima, J.Y. Huang, J. Li, Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6(11), 9425–9432 (2012)CrossRefGoogle Scholar
  20. 20.
    V.B. Shenoy, P. Johari, Y. Qi, Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study. J. Power Sources 195(19), 6825–6830 (2010)CrossRefGoogle Scholar
  21. 21.
    K.J. Zhao, G.A. Tritsaris, M. Pharr, W.L. Wang, O. Okeke, Z.G. Suo, J.J. Vlassak, E. Kaxiras, Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12(8), 4397–4403 (2012)CrossRefGoogle Scholar
  22. 22.
    Z.W. Cui, F. Gao, Z.H. Cui, J.M. Qu, A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys. J. Power Sources 207, 150–159 (2012)CrossRefGoogle Scholar
  23. 23.
    V.L. Chevrier, J.R. Dahn, First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156(6), A454–A458 (2009)CrossRefGoogle Scholar
  24. 24.
    V.L. Chevrier, J.R. Dahn, First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157(4), A392–A398 (2010)CrossRefGoogle Scholar
  25. 25.
    Q.F. Zhang, W.X. Zhang, W.H. Wan, Y. Cui, E.G. Wang, Lithium insertion in silicon nanowires: an ab initio study. Nano Lett. 10(9), 3243–3249 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Huang, T. Zhu, Atomistic mechanisms of lithium insertion in amorphous silicon. J. Power Sources 196(7), 3664–3668 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Kim, C.Y. Chou, J.G. Ekerdt, G.S. Hwang, Structure and properties of Li-Si alloys: a first-principles study. J. Phys. Chem. C 115(5), 2514–2521 (2011)CrossRefGoogle Scholar
  28. 28.
    P. Johari, Y. Qi, V.B. Shenoy, The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett. 11(12), 5494–5500 (2011)CrossRefGoogle Scholar
  29. 29.
    K.J. Zhao, W.L. Wang, J. Gregoire, M. Pharr, Z.G. Suo, J.J. Vlassak, E. Kaxiras, Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett. 11(7), 2962–2967 (2011)CrossRefGoogle Scholar
  30. 30.
    M.K.Y. Chan, C. Wolverton, J.P. Greeley, First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J. Am. Chem. Soc. 134(35), 14362–14374 (2012)CrossRefGoogle Scholar
  31. 31.
    S.C. Jung, J.W. Choi, Y.K. Han, Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett. 12(10), 5342–5347 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Haghi, L. Anand, Analysis of strain hardening viscoplastic thick-walled sphere and cylinder under external pressure. Int. J. Plast. 7(3), 123–140 (1991)CrossRefGoogle Scholar
  33. 33.
    N.F. Mott, S. Rigo, F. Rochet, A.M. Stoneham, Oxidation of silicon. Philos. Mag. B 60(2), 189–212 (1989)CrossRefGoogle Scholar
  34. 34.
    C.H. Hsueh, A.G. Evans, Oxidation-induced stress and some effects on the behavior of oxide-films. J. Appl. Phys. 54(11), 6672–6686 (1983)CrossRefGoogle Scholar
  35. 35.
    D.S. Franzblau, Computation of ring statistics for network models of solids. Phys. Rev. B 44(10), 4925–4930 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of NevadaRenoUSA
  2. 2.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations