Advertisement

Extended Formulations in Mixed-Integer Convex Programming

  • Miles LubinEmail author
  • Emre Yamangil
  • Russell Bent
  • Juan Pablo Vielma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9682)

Abstract

We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.

Keywords

Extended Formulation Outer Approximation Outer Approximation Algorithm Nonconvex MINLP Univariate Convex Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the anonymous referees for their comments. They greatly improved the clarity of the manuscript. We also thank one of the anonymous referees for pointing out the SOC-representability of the sssd family of instances originally derived in [15]. M. Lubin was supported by the DOE Computational Science Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308. The work at LANL was funded by the Center for Nonlinear Studies (CNLS) and was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. J.P. Vielma was funded by NSF grant CMMI-1351619.

References

  1. 1.
  2. 2.
    Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22, 555–567 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1, 1–41 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137, 453–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-Integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 1–39. Springer, New York (2012)CrossRefGoogle Scholar
  9. 9.
    Byrd, R.H., Nocedal, J., Waltz, R.: KNITRO: An integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization. Nonconvex Optimization and its Applications, vol. 83, pp. 35–59. Springer, Berlin (2006)CrossRefGoogle Scholar
  10. 10.
    Diamond, S., Chu, E., Boyd, S.: Disciplined convex programming. http://dcp.stanford.edu/
  11. 11.
    Drewes, S., Ulbrich, S.: Subgradient based outer approximation for mixed integer second order cone programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 41–59. Springer, New York (2012)CrossRefGoogle Scholar
  12. 12.
    Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goldberg, N., Leyffer, S.: An active-set method for second-order conic-constrained quadratic programming. SIAM J. Optim. 25, 1455–1477 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization. Nonconvex Optimization and its Applica-tions, vol. 84, pp. 155–210. Springer, US (2006)CrossRefGoogle Scholar
  15. 15.
    Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 61–89. Springer, New York (2012)CrossRefGoogle Scholar
  16. 16.
    Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31, 1533–1546 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hien, L.: Differential properties of euclidean projection onto power cone. Math. Methods Oper. Res. 83(3), 265–284 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hijazi, H., Bonami, P., Ouorou, A.: An outer-inner approximation for separable mixed-integer nonlinear programs. INFORMS J. Comput. 26, 31–44 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kılınç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)Google Scholar
  21. 21.
    Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. thesis, University of Dundee, December 1993Google Scholar
  22. 22.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998). International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image ProcessingMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS J. Comput. 27, 238–248 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-integer convex programming, ArXiv e-prints (2015)Google Scholar
  25. 25.
    Mittelmann, H.: MINLP benchmark. http://plato.asu.edu/ftp/minlp_old.html
  26. 26.
    O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Operator splitting for conic optimization via homogeneous self-dual embedding, ArXiv e-prints (2013)Google Scholar
  27. 27.
    Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone. Ph.D. thesis, Stanford University, Stanford, CA, March 2015Google Scholar
  28. 28.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: Proceedings of HPTCDL 2014, Piscataway, NJ, USA, pp. 18–28. IEEE Press (2014)Google Scholar
  30. 30.
    Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed integer conic quadratic programming, ArXiv e-prints (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miles Lubin
    • 1
    Email author
  • Emre Yamangil
    • 2
  • Russell Bent
    • 2
  • Juan Pablo Vielma
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations