Advertisement

Improved Approximation Algorithms for Hitting 3-Vertex Paths

  • Samuel Fiorini
  • Gwenaël Joret
  • Oliver Schaudt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9682)

Abstract

We study the problem of deleting a minimum cost set of vertices from a given vertex-weighted graph in such a way that the resulting graph has no induced path on three vertices. This problem is often called cluster vertex deletion in the literature and admits a straightforward 3-approximation algorithm since it is a special case of the vertex cover problem on a 3-uniform hypergraph. Very recently, You et al. [14] described an efficient 5/2-approximation algorithm for the unweighted version of the problem. Our main result is a 7/3-approximation algorithm for arbitrary weights, using the local ratio technique. We further conjecture that the problem admits a 2-approximation algorithm and give some support for the conjecture. This is in sharp constrast with the fact that the similar problem of deleting vertices to eliminate all triangles in a graph is known to be UGC-hard to approximate to within a ratio better than 3, as proved by Guruswami and Lee [7].

Keywords

Weighted Graph Vertex Cover Subgraph Isomorphic Vertex Cover Problem Local Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified framework for approximation algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)CrossRefGoogle Scholar
  3. 3.
    Anudhyan, B., Marek, C., Tomasz, K., Marcin, P.: A fast branching algorithm for cluster vertex deletion. In: Hirsch, Edward A., Kuznetsov, Sergei O., Pin, Jean-Éric, Vereshchagin, Nikolay K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 111–124. Springer, Heidelberg (2014). arXiv:1306.3877
  4. 4.
    Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tournaments. SIAM J. Comput. 30(6), 1993–2007 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. res. lett. 22(4), 111–118 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Guruswami, V., Lee, E.: Inapproximability of feedback vertex set for bounded length cycles. ECCC:TR14-006
  8. 8.
    Guruswami, V., Lee, E.: Inapproximability of \(H\)-transversal/packing. arXiv:1506.06302
  9. 9.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theor. Comput. Syst. 47(1), 196–217 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Iwata, Y., Oka, K.: Fast dynamic graph algorithms for parameterized problems. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 241–252. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Kloks, T., Kratsch, D., Müller, H.: Dominoes. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 106–120. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Mnich, M., Williams, V.V., Végh, L.A.: A \(7, 3\)-approximation for feedback vertex sets in tournaments. arXiv:1511.01137
  13. 13.
    Jianhua, T., Zhou, W.: A primal-dual approximation algorithm for the vertex cover \({P}_3\) problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    You, J., Wang, J., Cao, Y.: Approximate association via dissociation. arXiv:1510.08276

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Samuel Fiorini
    • 1
  • Gwenaël Joret
    • 2
  • Oliver Schaudt
    • 3
  1. 1.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium
  2. 2.Département d’InformatiqueUniversité libre de BruxellesBrusselsBelgium
  3. 3.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations