Earth Science Satellite Applications pp 173-205

Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO) | Cite as

Use of Remotely Sensed Climate and Environmental Information for Air Quality and Public Health Applications

  • William Crosson
  • Ali Akanda
  • Pietro Ceccato
  • Sue M. Estes
  • John A. Haynes
  • David Saah
  • Thomas Buchholz
  • Yu-Shuo Chang
  • Stephen Connor
  • Tufa Dinku
  • Travis Freed
  • John Gunn
  • Andrew Kruczkiewicz
  • Jerrod Lessel
  • Jason Moghaddas
  • Tadashi Moody
  • Gary Roller
  • David Schmidt
  • Bruce Springsteen
  • Alexandra Sweeney
  • Madeleine C. Thomson
Chapter

Abstract

Earth’s environment has direct and dramatic effects on its inhabitants in the realms of health and air quality. The climate, even in an unaltered state, poses great challenges but also presents great opportunity for the mankind to survive and flourish. Anthropogenic factors lead to even greater stress on the global ecosystem and to mankind, particularly with respect to air quality and the concomitant health issues. While the use of remote sensing technology to address issues is in its infancy, there is tremendous potential for using remote sensing as part of systems that monitor and forecast conditions that directly or indirectly affect health and air quality. This chapter discusses current status and future prospects in this field and presents three case studies showing the great value of remote sensing assets in distinct disciplines.

Glossary—List of Acronyms

AQAST

Air Quality Applied Sciences Team

AMSR-E

Advanced Microwave Scanning Radiometer—Earth Observing System

CALIPSO

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CDC

Centers for Disease Control and Prevention

CHIRPS

Climate Hazards Group InfraRed Precipitation with Station

CMAP

Climate Prediction Center (CPC) Merged Analysis of Precipitation

CMORPH

CPC MORPHing technique

DoD

Department of Defense

ENACTS

Enhancing National Climate Services

EO

Earth Observation

EPA

Environmental Protection Agency

EVI

Enhanced Vegetation Index

GEO-CAPE

Geostationary Coastal and Air Pollution Events

GHG

Greenhouse Gasses

GPCP

Global Precipitation Climatology Project

GIMMS

Global Inventory Monitoring and Modeling Studies

GPM

Global Precipitation Measurement

GRACE

Gravity Recovery and Climate Experiment

GTS

Global Telecommunication System

HAQ

Health and Air Quality

HyspIRI

Hyperspectral Infrared Imager

LST

Land Surface Temperature

MODIS

Moderate Resolution Imaging Spectroradiometer

MOPITT

Measurement of Pollution in the Troposphere

NAAQS

National Ambient Air Quality Standard

NDVI

Normalized Difference Vegetation Index

NMS

National Meteorological Service

NOAA

National Oceanic and Atmospheric Administration

PACE

Pre-Aerosol, Clouds, and ocean Ecosystems

PM2.5

Particulate Matter smaller than 2.5 microns in diameter

SeaWiFS

Sea-Viewing Wide Field of View Sensor

SMAP

Soil Moisture Active/Passive

SMOS

Soil Moisture and Ocean Salinity

SWOT

Surface Water and Ocean Topography

TEMPO

Tropospheric Emissions: Monitoring of Pollution

TRMM

Tropical Rainfall Measuring Mission

VCAP

Vectorial CAPacity model

VL

Visceral Leishmaniasis

VIIRS

Visible Infrared Imager Radiometer Suite

VOC

Volatile Organic Compounds

WHO

World Health Organization

References

  1. Agee, J. K. (2002). The fallacy of passive management. Conservation in Practice, 3(1), 18–26. doi:10.1111/j.1526-4629.2002.tb00023.x.CrossRefGoogle Scholar
  2. Ager, A. A., Vaillant, N. M., & Finney, M. A. (2010). A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management, 259, 1556–1570.CrossRefGoogle Scholar
  3. Akanda, A. S., & Hossain, F. (2012). The climate-water-health nexus in emerging megacities. EOS Transactions, 93(37), 353–354.CrossRefGoogle Scholar
  4. Akanda, A. S., Jutla, A. S., & Islam, S. (2009). Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation. Geophysical Reseach Letters, 36, L19401.CrossRefGoogle Scholar
  5. Akanda, A. S., Jutla, A. S., Alam, M., de Magny, G. C., Siddique, A. K., Sack. R. B., et al. (2011). Hydroclimatic influences on seasonal and spatial cholera transmission cycles: Implications for Public Health Intervention in Bengal Delta. Water Resources Research, 47, W00H07.Google Scholar
  6. Akanda, A. S., Jutla, A. S., Gute, D. M., Evans, T., & Islam, S. (2012). Reinforcing cholera intervention through prediction aided prevention. Bulletin of the World Health Organization, 90, 243–244.CrossRefGoogle Scholar
  7. Akanda, A. S., Jutla, A. S., Gute, D. M., Sack, B. R., Alam, M., Huq, A., et al. (2013). Population Vulnerability to Biannual Cholera Peaks and associated Macro-scale drivers in the Bengal Delta. American Journal of Tropical Medicine and Hygeine, 89(5), 950–959.Google Scholar
  8. Akanda, A. S., Jutla, A. S., & Colwell, R. R. (2014). Global diarrhea action plan needs integrated climate-based surveillance. The Lancet Global Health, 2(2), e69–e70.CrossRefGoogle Scholar
  9. Anderson, M. K. (2005). Tending the wild: Native American knowledge and the management of California’s natural resources. Berkeley, CA: University of California Press.Google Scholar
  10. Aregawi, M., Lynch, M., Bekele, W., Kebede, H., Jima, D., Taffese, H.S., et al. (2014). Measure of trends in malaria cases and deaths at hospitals, and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS ONE 9(1), e106359.Google Scholar
  11. Arno, S. F., Parsons, D. J., & Keane, R. E. (2000). Mixed-severity fire regimes in the Northern Rocky Mountains: Consequences of fire exclusion and options for the future. Proceedings of the Wilderness Science in a Time of Change Conference. RMRS Proceedings 15 (Vol. 5, pp. 225–232). USDA Forest Service, Rocky Mountain Research.Google Scholar
  12. Ashford, R. W., & Thomson, M. (1991). Visceral Leishmaniasis in Sudan. A delayed development disaster. Annals of Tropical Medicine and Parasitology, 85, 571–572.Google Scholar
  13. Beaty, R. M., & Taylor, A. H. (2008). Fire history and the structure and dynamics of a mixed conifer forest landscape in the northern Sierra Nevada, Lake Tahoe Basin, CA. Forest Ecology and Management, 255, 707–719.CrossRefGoogle Scholar
  14. Bertuzzo, E., Azaele, S., et al. (2008). On the space-time evolution of a cholera epidemic. Water Resources Research, 44, W01424.CrossRefGoogle Scholar
  15. Biswell, H. (1959). Man and fire in ponderosa pine in the Sierra Nevada of California. Sierra Club Bulletin, 44, 44–53.Google Scholar
  16. Biswell, H. H. (1989). Prescribed burning in California wildland vegetation management. Berkeley, CA: University of California Press.Google Scholar
  17. Boerner, R. E. J., Huang, J., & Hart, S. C. (2008). Fire, thinning, and the carbon economy: Effects of fire and fire surrogate treatments on estimated carbon storage and sequestration rate. Forest Ecology and Management, 255, 3081–3097.CrossRefGoogle Scholar
  18. Campbell, J. L., Harmon, M. E., & Mitchell, S. R. (2011). Can fuel-reduction treatments really increase forest carbon storage in the western U.S. by reducing future fire emissions? Frontiers in Ecology and the Environment. doi:10.1890/110057.Google Scholar
  19. Campbell-Lendrum, D., Manga, L., Bagayoko, M., & Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society B, 370, 20130552. doi:10.1098/rstb.2013.0552.CrossRefGoogle Scholar
  20. CARB (California Air Resources Board), Summer Wildfire PM Exceptional Event Demonstration. (2009). http://www2.epa.gov/air-quality-analysis/exceptional-events-submissions-table#PM10.
  21. Cash, B. A., Rodo, X., & Kinter III, J. L (2008). Links between Tropical Pacific SST and cholera incidence in Bangladesh: Role of the Eastern and Central Tropical Pacific. Journal of Climate, 21, 4647–4663.Google Scholar
  22. Ceccato, P. (2005). Operational Early Warning System Using SPOT-VGT and TERRA-MODIS to Predict Desert Locust Outbreaks. Proceedings of the 2nd VEGETATION International Users Conference, March 24–26, 2004. Antwerpen. In: F. Veroustraete, E. Bartholome, W. W. Verstraeten, (Eds.), Luxembourg: Luxembourg: Office for Official Publication of the European Communities, ISBN 92-894-9004-7, EUR 21552 EN, 475 p.Google Scholar
  23. Ceccato, P., Ghebremeskel, T., Jaiteh, M., Graves, P. M., Levy, M., Ghebreselassie, S., et al. (2007). Malaria stratification, climate and epidemic early warning in Eritrea. American Journal of Tropical Medicine and Hygiene, 77, 61–68.Google Scholar
  24. Ceccato, P., Vancutsem, C., & Temimi, M. (2010). Monitoring air and land surface temperatures from remotely sensed data for climate-human health applications. International Geoscience and Remote Sensing Symposium (IGARSS), 178–180.Google Scholar
  25. Ceccato, P., Vancutsem, C., Klaver, R., Rowland, J., & Connor, S. J. (2012). A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa. Journal of Tropical Medicine, 2012, Article ID 595948. doi:10.1155/2012/595948, 6 pp.
  26. Climate Action Reserve (CAR). (2012). Climate Action Reserve’s Forest Project Protocol Version 3.3. Retrieved October 29, 2015 from http://www.climateactionreserve.org/how/protocols/forest/dev/version-3-3/.
  27. Cockburn, T. A., & Casanos, J. G. (1960). Epidemiology of Endemic Cholera. Public Health Reports, Vol. 75, No. 9.Google Scholar
  28. Collins, B. M., Stephens, S. L., Moghaddas, J. J., & Battles, J. (2010). Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes. Journal of Forestry, 108(1), 24–31.Google Scholar
  29. Collins, B. M., Everett, R. G., & Stephens, S. L. (2011). Impacts of fire exclusion and managed fire on forest structure in an old growth Sierra Nevada mixed-conifer forest. Ecosphere, 2, art 51.Google Scholar
  30. Colwell, R. (1996). Global climate and infectious disease: The cholera paradigm. Science, 274(5295).Google Scholar
  31. Colwell, R., & Huq, A. (2001). Marine ecosystems and cholera. Hydrobiologia, 460.Google Scholar
  32. DaSilva, J., Garanganga, B., Teveredzi, V., Marx, S. M., Mason, S. J., & Connor, S. J. (2004). Improving epidemic malaria planning, preparedness and response in Southern Africa. Malaria Journal, 3, 37.CrossRefGoogle Scholar
  33. Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., et al. (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66, 189–197.Google Scholar
  34. Dinku, T., Ceccato, P., & Connor, S. J. (2011). Challenges to satellite rainfall estimation over mountainous and arid parts of East Africa. International Journal of Remote Sensing, 32(21), 5965–5979.CrossRefGoogle Scholar
  35. Dinku, T., Block, P., Sharoff, J., & Thomson, M. (2014a). Bridging critical gaps in climate services and applications in Africa. Earth Perspectives, 1(15).Google Scholar
  36. Dinku, T., Kanemba, A., Platzer, B., & Thomson, M. C. (2014b). Leveraging the climate for improved malaria control in Tanzania. Earthzine. http://www.earthzine.org/2014/02/15/.
  37. Dombeck, M. P., Williams, J. E., & Wood, C. A. (2004). Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conservation Biology, 18, 883–889.CrossRefGoogle Scholar
  38. Elnaiem, D. A. (2011). Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis. The Journal of Vector Ecology, 36(s1), S23–S31.CrossRefGoogle Scholar
  39. Elnaiem, D. A., Hassan, H. K., & Ward, R. D. (1997). Phlebotomine sandflies in a focus of visceral leishmaniasis in a border area of eastern Sudan. Annals of Tropical Medicine and Parasitology, 91(3), 307–318.CrossRefGoogle Scholar
  40. Elnaiem, D. A., Hassan, H. K., & Ward, R. D. (1999). Associations of Phlebotomus orientalis and other sandflies with vegetation types in eastern Sudan focus of kala-azar. Medical and Veterinary Entomology, 13, 198–203.CrossRefGoogle Scholar
  41. Emch, M., Feldacker, C., Yunus, M., Streatfield, P. K., DinhThiem, V., Canh do, G., et al. (2008). Local environmental predictors of cholera in Bangladesh and Vietnam. The American Journal of Tropical Medicine and Hygiene, 78(5), 823–832.Google Scholar
  42. Fontaine, R. E., Najjar, A. E., & Prince, J. S. (1961). The 1958 malaria epidemic in Ethiopia. American Journal of Tropical Medicine and Hygiene, 10, 795–803.Google Scholar
  43. Fulé, P. Z., Crouse, J. E., Heinlein, T. A., Moore, M. M., Covington, W. W., & Verkamp, G. (2003). Mixed severity fire regime in a high-elevation forest: Grand Canyon, Arizona. Landscape Ecology, 18, 465–486.CrossRefGoogle Scholar
  44. Gebre-Michael, T., Malone, J. B., Balkew, M., Ali, A., Berhe, N., Hailu, A., et al. (2004). Mapping the potential distribution of Phlebotomus martini and P. orientalis (Diptera: Psychodidae), vectors of kala-azar in East Africa by use of geographic information systems. Acta Tropica, 90, 73–86.Google Scholar
  45. Germain, R. H., Floyd, D. W., & Stehman, S. V. (2001). Public perceptions of the USDA Forest Service public participation process. Forest Policy and Economics, 3, 113–124.CrossRefGoogle Scholar
  46. Gerstl, S., Amsalu, R., & Ritmeijer, K. (2006). Accessibility of diagnostic and treatment centres for visceral leishmaniasis in Gedaref State, northern Sudan. Tropical Medicine and International Health, 11(2), 167–175.CrossRefGoogle Scholar
  47. Gil, A. I., Louis, V. R., Rivera, I. N. G., Lipp, E., Huq, A, Lanata, C.F., et al. (2004). Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environmental Microbiology, 6(7), 699–706.Google Scholar
  48. Gonzalez, P., Battles, J. J., Collins, B. M., Robards, T., & Saah, D. S. (2015). Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. Forest Ecology and Management. doi:10.1016/j.foreco.2015.03.040.
  49. Griffith, D. C., Kelly-Hope, L. A., & Miller, M. A. (2006). Review of reported cholera outbreaks worldwide, 1995–2005. The American Journal of Tropical Medicine and Hygiene, 75(5), 973–977.Google Scholar
  50. Hashizume, M., Armstrong, B., Hajat, S., Wagatsuma, Y., Faruque, A. S., Hayashi, T., et al. (2008). The Effect of Rainfall on the Prevalence of Cholera in Bangladesh. Epidemiology, 19(1).Google Scholar
  51. Hirt, P. W. (1996). A conspiracy of optimism: Management of the national forests since World War Two. Lincoln, Neb: University of Nebraska Press.Google Scholar
  52. Hoogstraal, H., & Heyneman, D. (1969). Leishmaniasis in the Sudan Republic. The American Journal of Tropical Medicine and Hygiene, 18(6). International Soil Reference and Information Centre (ISRIC)—World Soil Information, 2013. Soil property maps of Africa at 1 km. www.isric.org.
  53. Hossain, F. (2015). Data for all: Using satellite observations for social good. Eos, 96. doi:10.1029/2015EO037319. Retrieved October 14 2015.
  54. Huq, A., & Colwell, R. R. (1996). Vibrios in the marine and estuarine environment: Tracking Vibrio cholerae. Ecosystem Health, 13(9).Google Scholar
  55. Hurteau, M., & North, M. (2009). Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Frontiers in Ecology and the Environment, 7, 409–414.CrossRefGoogle Scholar
  56. Hurteau, M., & North, M. (2010). Carbon recovery rates following different wildfire risk mitigation treatments. Forest Ecology and Management, 260, 930–937.CrossRefGoogle Scholar
  57. Hurteau, M. D., Koch, G. W., & Hungate, B. A. (2008). Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Frontiers in Ecology and the Environment, 6(9), 493–498. doi:10.1890/070187.CrossRefGoogle Scholar
  58. Jones, G., Loeffler, D., Calkin, D., & Chung, W. (2010). Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return. Biomass Bioenergy, 34, 737–746.CrossRefGoogle Scholar
  59. Jutla, A. S., Akanda, A. S., & Islam, S. (2012). Satellite remote sensing of space-time plankton variability in the Bay of Bengal: Connections to cholera outbreaks. Remote Sensing of Environment, 123, 196–206.CrossRefGoogle Scholar
  60. Jutla, A. S., Akanda, A. S., & Islam, S. (2013). A framework for predicting endemic cholera using satellite derived environmental determinants. Environ Modeling and Software, 47, 148–158.CrossRefGoogle Scholar
  61. Jutla, A., Unnikrishnan, A., Akanda, A. S., Huq, H., & Colwell, R. R. (2015a). Predictive time series analysis linking Bengal cholera with terrestrial water storage measured from GRACE sensors. American Journal of Tropical Medicine and Hygiene (Accepted).Google Scholar
  62. Jutla, A., Aldaach, H., Billian, H., Akanda, A. S., Huq, A., & Colwell, R. R. (2015b). Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLoS-ONE. doi:10.1371/journal.pone.0137828.
  63. Kilgore, B. M., & Taylor, D. (1979). Fire history of a sequoia-mixed conifer forest. Ecology, 60, 129–142.CrossRefGoogle Scholar
  64. Koelle, K., Rodo, X., Pascual, M., Yunus, M., & Mostafa, G. (2005). Refractory periods and climate forcing in cholera dynamics. Nature, 436, 4.CrossRefGoogle Scholar
  65. Lee, C., Erickson, P., Lazarus, M., & Smith, G. (2010). Greenhouse gas and air pollutant emissions of alternatives for woody biomass residues. Seattle, WA: Stockholm Environmental Institute. http://data.orcaa.org/reports/all-reports-entries/woody-biomass-emissions-study/.
  66. Lobitz, B., Beck, L. Huq, A. Wood, B. Faruque A., & Colwell, R. (2000). Climate and infectious disease: Use of remote sensing for detection of vibrio cholerae. PNAS, 97(4).Google Scholar
  67. Longini, M., Zaman, K., Yunus, M., & Siddique, A. K. (2002). Epidemic and Endemic Cholera Trends over a 33-Year Period in Bangladesh. J. Infec. Dis., 186, 246–251.CrossRefGoogle Scholar
  68. McDonald, K. C., Chapman, B., Podest, E., Schroeder, R., Flores, S., Willacy, K., et al. (2011). Monitoring inundated wetlands ecosystems with satellite microwave remote sensing in support of earth system science research. Conference Paper, 34th International Symposium on Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, 4p.Google Scholar
  69. MDEQ (Montana Department of Environmental Quality), Exceptional Events Demonstration for PM10 and PM2.5 Data for 2007 Wildfires (2007). http://www2.epa.gov/sites/production/files/2015-05/documents/mt_deq_demonstration_121407.pdf.
  70. Millar, C. I., & Stephenson, N. L. (2015). Temperate forest health in an era of emerging mega disturbance. Science, 349(6250), 823–826.CrossRefGoogle Scholar
  71. Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145–2151. doi:10.1890/06-1715.1.CrossRefGoogle Scholar
  72. Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems, 12, 16–32.CrossRefGoogle Scholar
  73. Moghaddas, J. J., & Craggs, L. (2007). A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest. International Journal of Wildland Fire, 16(6), 673–678. doi:10.1071/WF06066.
  74. Moghaddas, J. J., Collins, B. M., Menning, K., Moghaddas, E. E. Y., & Stephens, S. L. (2010). Fuel treatment effects on modeled landscape-level fire behavior in the northern Sierra Nevada. Canadian Journal of Forest Research, 40, 1751–1765.CrossRefGoogle Scholar
  75. National Fire Interagency Fire Center (NIFC). (2015). 1997–2014 large fires. Retrieved 10 October, 2015 from https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html.
  76. National Research Council (NRC). (2007). Earth science and Applications from space: National imperatives for the next decade and beyond. Washington, DC: The National Academies Press. doi:10.17226/11820.
  77. North, M. P., & Hurteau, M. D. (2011). High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest. Forest Ecology and Management, 261, 1115–1120.CrossRefGoogle Scholar
  78. North, M. P., Stine, P., O’Hara, K., Zielinski, W., & Stephens, S. (2009). An ecosystems management strategy for Sierra mixed-conifer forests. PSW GTR-220 with addendum. Albany, CA, USA: USDA Forest Service, Pacific Southwest Research Station.Google Scholar
  79. North, M. P., Stephens, S. L., Collins, B. M., Agee, J. K., Aplet, G., Franklin, J. F., et al. (2015). Reform forest fire management. Science, 349(6254), 1280–1281.Google Scholar
  80. Pacala, S., Birdsey, R. A., Bridgham, S. D., Conant, R. T., Davis, K., Hales, B., et al. (2007). The North American carbon budget past and present. In: A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland (Eds.), The First State of the Carbon Cycle Report (SOCCR): The North American Carbon budget and implications for the global carbon cycle (Vol. 29–36, pp. 167–170). Asheville, NC: National Oceanic and Atmospheric Administration, National Climatic Data Center.Google Scholar
  81. Pascual, M., Bouma, M., & Dobson, A. (2002). Cholera and climate: Revisiting the quantitative evidence. Microbes and Infection, 4(2).Google Scholar
  82. Pekel, J. F., Ceccato, P., Vancutsem, C., Cressman, K., Vanbogaert, E., & Defourny, P. (2011). Development and application of multi-temporal colorimetric transformation to monitor vegetation in the Desert Locust Habitat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 318–326.CrossRefGoogle Scholar
  83. Perry, D. A., Hessburg, P. F., Skinner, C. N., Spies, T. A., Stephens, S. L., Taylor, A. H., et al. (2011). The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. Forest Ecology and Management, 262, 703–717.Google Scholar
  84. Rajesh, K., & Sanjay, K. 2013. Change in global climate and Prevalence of Visceral Leishmaniasis. International Journal of Scientific and Research Publications, 3(1).Google Scholar
  85. Randerson, J., Liu, H., Flanner, M. Chambers, S., Jin, Y., Hess, P., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314, 1130–1132.Google Scholar
  86. Reinhardt, E., & Holsinger, L. (2010). Effects of fuel treatments on carbon-disturbance relationships in forests of the northern Rocky Mountains. Forest Ecology and Management, 259, 1427–1435.CrossRefGoogle Scholar
  87. Reinhardt, E. D., Keane, R. E., Calkin, D. E., & Cohen, J. D. (2008). Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology and Management, 256(12), 1997–2006. doi:10.1016/j.foreco.2008.09.016.
  88. Roccaforte, J. P., Fulé, P. Z., Chancellor, W. W., & Laughlin, D. C. (2012). Woody debris and tree regeneration dynamics following severe wildfires in Arizona ponderosa pine forests. Canadian Journal of Forest Research, 42, 593–604.CrossRefGoogle Scholar
  89. Saah, D., Robards, T., Moody, T., O’Neil-Dune, J., Moritz, M., Hurteau, M., et al. (2012). Developing an Analytical Framework for Quantifying Greenhouse Gas Emission Reductions from Forest Fuel Treatment Projects in Placer County, California. Prepared for: United States Forest Service: Pacific Southwest Research Station, 130p.Google Scholar
  90. Saah, D., Schmidt, D., Roller, G., Moody, T. J., Moghaddas, J. J., & Freed, T. (2015). Carbon storage and mass balances: Characteristics of forest carbon and the relationship between fire severity and emissions in the Sierra Nevada Mountains, California, USA. Prepared for: California Energy Commission CEC-600-10-006, 95p.Google Scholar
  91. Safford, H. D., Schmidt, D. A., & Carlson, C. H. (2009). Effects of fuel treatments on fire severity in an area of wildland–urban interface, Angora Fire, Lake Tahoe Basin, California. Forest Ecology and Management, 258, 773–787. doi:10.1016/j.foreco.2009.05.024.CrossRefGoogle Scholar
  92. Salomon, O. D., Quintana, M. G., Mastrangelo, A. V., & Fernandez, M. S. (2012). Leishmaniasis and climate change—case study: Argentina. Journal of Tropical Medicine. doi:10.1155/2012/601242.Google Scholar
  93. Savage, M., & Mast, N. J. (2005). How resilient are southwestern ponderosa pine forests after crown fires? Canadian Journal of Forest Research, 35, 967–977.CrossRefGoogle Scholar
  94. Schroeder, R. M., Rawlins, A., McDonald, K. C., Podest, E., Zimmermann, R., & Kueppers, M. (2010). Satellite microwave remote sensing of North Eurasian inundation dynamics: Development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data. Environmental Research Letters, special issue on Northern Hemisphere high latitude climate and environmental change, 5, 015003 (7 pp). doi:10.1088/1748-9326/5/1/015003.
  95. Schwartz, B. S., Harris, J. B., Khan, A. I., Larocque, R. C., Sack, D. A., Malek, M. A., et al. (2006). Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, 2004. The American Journal of Tropical Medicine and Hygiene, 74(6).Google Scholar
  96. Schweizer, D., & Cisneros, R. (2014). Wildland fire management and air quality in the southern Sierra Nevada: Using the Lion Fire as a case study with a multi-year perspective on PM 2.5 impacts and fire policy. Journal of Environmental Management, 144, 265–278.CrossRefGoogle Scholar
  97. Seaman, J., Mercer, A. J., & Sondorp, E. (1996). The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: course and impact from 1984 to 1994. International Journal of Epidemiology, 25(4), 862–871.CrossRefGoogle Scholar
  98. Sedjo, R. A., & Marland, G. (2003). Inter-trading permanent emissions credits and rented temporary carbon emissions offsets: Some issues and alternatives. Climate Policy, 3, 435–444.CrossRefGoogle Scholar
  99. SMAQMD (Sacramento Metropolitan Air Quality Management District). (2011). Exceptional Events Demonstration for 1-Hour Ozone Exceedance in the Sacramento Regional Nonattainment Area due to 2008 Wildfires.Google Scholar
  100. Springsteen, B., Christofk, T., Eubanks, S., Mason, T., Clavin, C., & Storey, B. (2011). Emission reductions from woody biomass waste for energy as an alternative to open burning. Journal of the Air and Waste Management Association, 61, 63–68.CrossRefGoogle Scholar
  101. Springsteen, B., Christofk, T., York, R. A., Mason, T., Baker, S., Lincoln, E., et al. (2015). Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions. California Agriculture, 69(3), 142–149.Google Scholar
  102. State of California. (2006). Assembly Bill 32: The California Global Warming Solutions Act of 2006. Nunez, F. September 27, 2006.Google Scholar
  103. Stephens, S. L. (2000). Mixed conifer and upper montane forest structure and uses in 1899 from the central and northern Sierra Nevada, CA. Madrono, 47, 43–52.Google Scholar
  104. Stephens, S. L., & Moghaddas, J. J. (2005). Silvicultural and reserve impacts on potential fire behavior and forest conservation: Twenty-five years of experience from Sierra Nevada mixed conifer forests. Biological Conservation, 125(3), 369–379. doi:10.1016/j.biocon.2005.04.007.
  105. Stephens, S. L., & Ruth, L. W. (2005). Federal forest-fire policy in the United States. Ecological Applications, 15(2), 532–542. doi:10.1890/04-0545.
  106. Stephens, S. L., Martin, R. E., & Clinton, N. D. (2007). Prehistoric fire area and emissions from California’s forests, woodlands, shrublands and grasslands. Forest Ecology and Management, 251, 205–216.CrossRefGoogle Scholar
  107. Stephens, S. L., Moghaddas, J., Hartsough, B., Moghaddas, E., & Clinton, N. E. (2009a). Fuel treatment effects on stand level carbon pools, treatment related emissions, and fire risk in a Sierran mixed conifer forest. Canadian Journal of Forest Research, 39, 1538–1547.Google Scholar
  108. Stephens, S. L., Moghaddas, J., Edminster, C., Fiedler, C., Hasse, S., Harrington, M., et al. (2009b). Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 19, 305–320.Google Scholar
  109. Stephens, S. L., Moghaddas, J. J., Edminster, C., Fiedler, C. E., Haase, S., Harrington, M., et al. (2009c). Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 19(2), 305–320. doi:10.1890/07-1755.1. PMID:19323192.
  110. Stephens, S. L., McIver, J. D., Boerner, R. E. J., Fettig, C. J., Fontaine, J. B., Hartsough, B. R., et al. (2012a). Effects of forest fuel reduction treatments in the United States. BioScience, 62, 549–560.Google Scholar
  111. Stephens, S. L., Boerner, R. E. J., Moghaddas, J. J., Moghaddas, E. E. Y., Collins, B. M., Dow, C. B., et al. (2012b). Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. Ecosphere, 3(5), 38. http://dx.doi.org/10.1890/ES11-00289.1.
  112. Sweeney, A., Kruczkiewicz, A., Reid, C., Seaman, J., Abubakar, A., Ritmeijer, K., et al. (2014). Utilizing NASA Earth observations to explore the relationship between environmental factors and Visceral Leishmaniasis in the Northern States of the Republic of South Sudan. Earthzine IEEE. Google Scholar
  113. Thomson, M. C., Elnaiem, D. A., Ashford, R. W., & Connor, S. J. (1999). Towards a kala azar risk map for Sudan: Mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables. Tropical Medicine and International Health, 4(2), 105–113.CrossRefGoogle Scholar
  114. Urbanski, S. (2014). Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecology and Management, 317, 51–60.CrossRefGoogle Scholar
  115. US Forest Service (USFS). (2004). Sierra Nevada Forest Plan Amendment (SNFPA) Final Supplemental Environmental Impact Statement (FEIS) and Record of Decision (ROD). January 2004.Google Scholar
  116. US Forest Service (USFS). (2015). Managing Wildfires. http://www.fs.fed.us/managing-land/fire.
  117. Uz, B. M., & Yoder, J. A. (2004). High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables. Deep Sea Research II, 51(10–11), 1001–1017. doi:10.1016/j.dsr2.2004.03.003.CrossRefGoogle Scholar
  118. Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS Land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.CrossRefGoogle Scholar
  119. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313(5789), 940–943. doi:10.1126/science.1128834. PMID:16825536.
  120. Westerling, A., Brown, T., Schoennagel, T. Swetnam, T., Turner, M., & Veblen, T. (2014). Briefing: Climate and wildfire in western U.S. forests. In: V. A. Sample; R. P. Bixler (Eds.), Forest conservation and management in the Anthropocene: Conference proceedings. Proceedings. RMRS-P-71. Fort Collins, CO: US Department of Agriculture, Forest Service. Rocky Mountain Research Station. pp. 81–102.Google Scholar
  121. WHO/UNICEF. (2009). Diarrhea: Why children are still dying and what can be done, Geneva, Switzerland.Google Scholar
  122. WHO/UNICEF. (2013). Ending Preventable Child Deaths from Pneumonia and Diarrhea by 2025. The Integrated Global Action Plan for Pneumonia and Diarrhea (GAPPD). Retrieved from www.unicef.org/media/files/Final_GAPPD_main_Report-_EN-8_April_2013.pdf.
  123. WHO/UNICEF. (2014). Neglected Tropical Diseases: The 17 neglected tropical diseases. Retrieved from http://www.who.int/neglected_diseases/diseases/en/.
  124. Wiedinmyer, C., & Neff, J. C. (2007). Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance and Management, 2(1), 1–12.CrossRefGoogle Scholar
  125. Wildland Fire Leadership Council. (2011). A National Cohesive Wildland Fire Strategy. http://www.forestsandrangelands.gov/strategy/documents/reports/1_CohesiveStrategy03172011.pdf. Accessed 10/29/2015.
  126. Yeshiwondim, A. K., Gopal, S., Hailemariam, A. T., Dengela, D. O., & Patel, H. P. (2009). Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia. International Journal of Health Geographics, 8, 5. doi:10.1186/1476-072X-8-5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • William Crosson
    • 1
  • Ali Akanda
    • 2
  • Pietro Ceccato
    • 3
  • Sue M. Estes
    • 4
  • John A. Haynes
    • 5
  • David Saah
    • 6
    • 7
  • Thomas Buchholz
    • 6
    • 8
  • Yu-Shuo Chang
    • 9
  • Stephen Connor
    • 10
  • Tufa Dinku
    • 3
  • Travis Freed
    • 6
  • John Gunn
    • 11
  • Andrew Kruczkiewicz
    • 3
  • Jerrod Lessel
    • 3
  • Jason Moghaddas
    • 6
  • Tadashi Moody
    • 6
  • Gary Roller
    • 6
  • David Schmidt
    • 6
  • Bruce Springsteen
    • 9
  • Alexandra Sweeney
    • 3
  • Madeleine C. Thomson
    • 3
  1. 1.Universities Space Research Association, Marshall Space Flight CenterHuntsvilleUSA
  2. 2.Civil and Environmental Engineering DepartmentUniversity of Rhode IslandKingstonUSA
  3. 3.International Research Institute for Climate and Society, The Earth Institute, Columbia UniversityNew YorkUSA
  4. 4.University of Alabama in HuntsvilleHuntsvilleUSA
  5. 5.National Aeronautics and Space AdministrationWashingtonUSA
  6. 6.Spatial Informatics Group, LLCPleasantonUSA
  7. 7.University of San Francisco, Geospatial Analysis LabSan FranciscoUSA
  8. 8.Gund Institute for Ecological Economics, University of VermontBurlingtonUSA
  9. 9.Placer County Air Pollution Control DistrictAuburnUSA
  10. 10.School of Environmental Sciences University of LiverpoolLiverpoolUK
  11. 11.Spatial Informatics Group—Natural Assets Laboratory (SIG-NAL)CumberlandUSA

Personalised recommendations