Dynamic Cognitive Geovisualization for Information Support of Decision-Making in the Regional System of Radiological Monitoring, Control and Forecasting

  • A. V. VicentiyEmail author
  • M. G. Shishaev
  • A. G. Oleynik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 466)


In this paper, we describe the technique of dynamic cognitive geovisualization. Cognitive geovisualization can be used to support user cognitive activity in carrying out tasks of monitoring and forecasting in decision support systems for managing complex natural and technological objects. A feature of cognitive geovisualization is that the construction of geoimages taken into account the peculiarities of perception of the user. Cognitive geoimages improves the efficiency of the visual analysis of large amounts of data, speed and quality of decision-making. We describe the application of dynamic cognitive geovisualization technology in information decision support system for regional radiological monitoring, control and forecasting. To confirm the possibilities of technology we have created a prototype of web geoserver for radiological monitoring, control and forecasting. The main functions of the dynamic cognitive geovisualization technology implemented in this web geoserver as the user tools.


Cognitive geosualization Radiological monitoring Information decision support Web geoservice 



This work is partially supported by RFBR grant № 15-29-06973 “Development of methodology, modeling tools and information technologies for systemic risk assessment of new exploration of the Arctic”.


  1. 1.
    Oeltze, S., Doleisch, H, Hauser, H., Weber, G.: Interactive visual analysis of scientific data. In: Presentation at IEE VisWeek 2012, Seattle, WA, USAGoogle Scholar
  2. 2.
    Iliinsky, N., Steele, J.: Designing Data Visualizations. O’Reilly, Sebastopol, CA (2011)Google Scholar
  3. 3.
    Bertin, J., Barbut, M.C.: Sémiologie Graphique. Les diagrammes, les réseaux, les cartes, 431 p. Gauthier-Villars, Paris (1967)Google Scholar
  4. 4.
    Tukey, J.W.: Exploratory Data Analysis, 688 p. Pearson, Reading, Mass (1977)Google Scholar
  5. 5.
    Zenkin, A.A.: Cognitive Computer Graphics. In: Pospelov, D.A. (ed.) 192 p. M.: Nauka (1991). (Зенкин А. А. Когнитивная компьютерная графика/Под ред. Д. А. Поспелова. – М.: Наука., 1991. 192 с.)Google Scholar
  6. 6.
    Pospelov D.A.: Artificial intelligence. Directory. Book 2. Models and methods. M.: Radio and Communications, 304 p. (1990) (Поспелов Д.А. Искусственный интеллект. Справочник. Книга 2. Модели и методы М.: Радио и связь, 1990. 304 с.)Google Scholar
  7. 7.
    Visualization in Scientific Computing. Special Issue, ACM SIGRAPH Computer Graphics, vol. 21, no. 6 (1987)Google Scholar
  8. 8.
    MacEachren, A., Kraak, M.: Research challenges in geovisualization. Cartogr. Geogr. Inf. Sci. 28(1), 3–12 (2001)CrossRefGoogle Scholar
  9. 9.
    Montello, D.R.: A conceptual model of the cognitive processing of environmental distance information. Spatial information theory. In: 9th International Conference, COSIT 2009 Aber Wrac’h, France, September 21–25, 2009 Proceedings, pp. 1–17. doi: 10.1007/978-3-642-03832-7_1, Print ISBN 978-3-642-03831-0, Online ISBN 978-3-642-03832-7, Series Volume 5756 Series ISSN 0302-97430Google Scholar
  10. 10.
    Montello, D.R.: The Perception and Cognition of Environmental Distance: Direct Sources of Information. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 297–311. Springer, Heidelberg (1997). Scholar
  11. 11.
    Cooper, A., Reimann, R.: Dave Cronin About Face 3: The Essentials of Interaction Design, 610 p. Wiley (2007)Google Scholar
  12. 12.
    Hewett, B., Card, C., Gasen, M., Perlman, S., Verplank, W.: ACM SIGCHI Curricula for Human-Computer Interaction. UTILITY doctypa.
  13. 13.
    Robert, L., Solso, M., MacLin, K., MacLin, O.H.: Cognitive Psychology, 8th edn., p. 592. Allyn & Bacon (September 7, 2007) (2008). ISBN13: 978-0205521081 ISBN10: 0205521088Google Scholar
  14. 14.
    Koffka, K.: Principles of Gestalt Psychology, p. 720. Routledge, NY (1935)Google Scholar
  15. 15.
    Miller, G.: The magical number seven, plus or minus two. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  16. 16.
    Buddenberg, R.: Toward an Interoperability Reference Model.
  17. 17.
    Matheus, C., Kokar, M. et al.: SAWA: an assistant for higher level fusion and situation awareness. In: SPIE Conference on Multisensor, Multisource Information Fusion: Proceedings of SPIE, vol. 5813, pp. 75–85. Orlando, FL (2005)Google Scholar
  18. 18.
    Data source: Landsat Science.
  19. 19.
    Data source: Openstreetmap.

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • A. V. Vicentiy
    • 1
    • 2
    Email author
  • M. G. Shishaev
    • 3
  • A. G. Oleynik
    • 1
    • 2
  1. 1.Institute for Informatics and Mathematical Modelling of Technological Processes of the Kola Science Center RASApatityRussia
  2. 2.Russia and Kola Branch of Petrozavodsk State UniversityApatityRussia
  3. 3.Murmansk Arctic State UniversityMurmanskRussia

Personalised recommendations