Advertisement

Self-Organizing Migrating Algorithm Used for Model Predictive Control of Semi-batch Chemical Reactor

  • Lubomír Macků
  • David Sámek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 466)

Abstract

The current availability of powerful computing technologies enables using of complex computational methods. One of such complex method is also the self-organizing migrating algorithm (SOMA). This algorithm can be used for solving of various optimization problems. It may be used even for such complex task, as the non-linear process control is. In this paper, the capability of using SOMA algorithm for the model predictive control (MPC) of semi-batch chemical reactor is studied. The MPC controller including self-organizing migrating algorithm (SOMA) is used for the optimization of the control sequence. The reactor itself is used in chromium recycling process in leather industry.

Keywords

Model predictive control SOMA Chemical reactor Exothermic reaction Mathematical modeling 

References

  1. 1.
    Kolomaznik, K., Adamek, M., Uhlirova, M.: Potential danger of chromium tanned wastes. In: HTE’07: Proceedings of the 5th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, pp. 136–140, WSEAS, Athens, Greece (2007)Google Scholar
  2. 2.
    Gazdos, F., Macku, L.: Analysis of a semi-batch reactor for control purposes. In: Proceedings of 22nd European Conference on Modelling and Simulation ECMS 2008, pp. 512–518. ECMS, Nicosia, Cyprus (2008)Google Scholar
  3. 3.
    Coelho, L.S., Marianib, V.C.: An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers. Manage. 51(12), 2580–2587 (2010)CrossRefGoogle Scholar
  4. 4.
    Deep, K.: A self-organizing migrating genetic algorithm for constrained optimization. Appl. Math. Comput. 198(1), 237–250 (2008)Google Scholar
  5. 5.
    Singh, D., Agrawal, S.: Log-logistic SOMA with quadratic approximation crossover. Paper presented at the International Conference on Computing, Communication and Automation, ICCCA 146–151, 2015 (2015)Google Scholar
  6. 6.
    Nolle, L., Zelinka, I., Hopgood, A.A., Goodyear, A.: Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. 36(10), 645–653 (2005)Google Scholar
  7. 7.
    Luyben, W.L.: Chemical Reactor Design and Control. Wiley, Hoboken, NJ (2007)CrossRefGoogle Scholar
  8. 8.
    Luyben, W.L.: Process Modeling, Simulation and Control for Chemical Engineers. McGraw-Hill, New York (1996)Google Scholar
  9. 9.
    Caccavale, F., Iamarino, M., Pierri, F., Tufano, V.: Control and Monitoring of Chemical Batch Reactors. Springer, London (2011)Google Scholar
  10. 10.
    Aguilar-Garnica, E., Garcia-Sandoval, J.P., Gonzalez-Alvarez, V.: PI controller design for a class of distributed parameter systems. Chem. Eng. Sci. 66(15), 4009–4019 (2001)Google Scholar
  11. 11.
    Aguilar-Lopez, R., Martinez-Guerra, R., Maya-Yescas, R.: Temperature regulation via PI high-order sliding-mode controller design: application to a class of chemical reactor. Int. J. Chem. Reactor Eng. 7(1) 2009Google Scholar
  12. 12.
    Vojtesek, J., Dostal, P.: Simulation of Adaptive Control Applied on Tubular Chemical Reactor. WSEAS Trans. Heat Mass Transf. 6(1), 1–10 (2011)Google Scholar
  13. 13.
    Vojtesek, J., Dostal, P.: Two types of external linear models used for adaptive control of continuous stirred tank reactor. In: Proceedings of the 25th European Conference on Modelling and Simulation, pp. 501–507, ECMS, Krakow, Poland (2011)Google Scholar
  14. 14.
    Leosirikul, A., Chilin, D., Liu, J., Davis, J.F., Christofides, P.D.: Monitoring and retuning of low-level PID control loops. Chem. Eng. Sci. 69(1), 287–295 (2012)CrossRefGoogle Scholar
  15. 15.
    Du, W., Wu, X., Zhu, Q.: Direct design of a U-model-based generalized predictive controller for a class of nonlinear (polynomial) dynamic plants. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(1), 27–42 (2012)Google Scholar
  16. 16.
    Zhang, R., Xue, A., Wang, S.: Dynamic Modeling and Nonlinear Predictive Control Based on Partitioned Model and Nonlinear Optimization. Ind. Eng. Chem. Res. 50(13), 8110–8121 (2011)CrossRefGoogle Scholar
  17. 17.
    Matusu, R., Zavacka, J., Prokop, R., Bakosova, M.: The Kronecker summation method for robust stabilization applied to a chemical reactor. J. Control Sci. Eng. 2011, article ID 273469 (2011)Google Scholar
  18. 18.
    Hosen, M.A., Hussain, M.A., Mjalli, F.S.: Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation. Control Eng. Pract. 19(5), 454–467 (2011)CrossRefGoogle Scholar
  19. 19.
    Rani, K.Y., Patwardhan, S.C.: Data-driven model based control of a multi-product semi-batch polymerization reactor. Chem. Eng. Res. Des. 85(10) (2007)Google Scholar
  20. 20.
    Xaumiera, F., Le Lann, M.V., Cabassud, M., Casamatta, G.: Experimental application of nonlinear model predictive control: temperature control of an industrial semi-batch pilot-plant reactor. J. Process Control (2002). doi: 10.1016/S0959-1524(01)00057-9 CrossRefGoogle Scholar
  21. 21.
    Hvala, N., Aller, F., Miteva, T., Kukanja, D.: Modelling, simulation and control of an industrial, semi-batch, emulsion-polymerization reactor. Comput. Chem. Eng. 35(10), 2066–2080 (2011)CrossRefGoogle Scholar
  22. 22.
    Oravec, J., Bakošová, M.: Robust model-based predictive control of exothermic chemical reactor. Chem. Pap. 69(10), 1389–1394 (2015)CrossRefGoogle Scholar
  23. 23.
    Dao, T.T.: Investigation on evolutionary computation techniques of a nonlinear system. Model. Simul. Eng. 2011, Article ID 496732 (2011)Google Scholar
  24. 24.
    Zelinka, I., Davendra, D., Šenkeřík, R., Pluháček, M.: Investigation on evolutionary predictive control of chemical reactor. J. Appl. Logic 13(2), 156–166 (2015)CrossRefGoogle Scholar
  25. 25.
    Bouhenchir, H., Cabassud, M., Le Lann, M.V.: Predictive functional control for the temperature control of a chemical batch reactor. Comp Chem Eng 30(6–7), 1141–1154 (2006)CrossRefGoogle Scholar
  26. 26.
    Camacho, E.F., Bordons, C.: Model Predictive Control in the Process Industry. Springer, London (2004)zbMATHGoogle Scholar
  27. 27.
    Zelinka, I.: SOMA—Self Organizing Migrating Algorithm. In: Onwubolu, G., Babu, B.V. (eds.) New Optimization Techniques in Engineering, pp. 167–217. Springer, London, UK (2004)CrossRefGoogle Scholar
  28. 28.
    Coleman, T.F., Zhang, Y.: Fmincon [online]. Mathworks, Natick. http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html. Accessed 25 Sept 2011

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Applied Informatics, Department of Security EngineeringTomas Bata University in ZlinZlínCzech Republic

Personalised recommendations