Advertisement

A Comparative Analysis of Detecting Symmetries in Toroidal Topology

  • Mohammad Ali Javaheri JavidEmail author
  • Wajdi Alghamdi
  • Robert Zimmer
  • Mohammad Majid al-Rifaie
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 650)

Abstract

In late 1940s and with the introduction of cellular automata, various types of problems in computer science and other multidisciplinary fields have started utilising this new technique. The generative capabilities of cellular automata have been used for simulating various natural, physical and chemical phenomena. Aside from these applications, the lattice grid of cellular automata has been providing a by-product interface to generate graphical patterns for digital art creation. One notable aspect of cellular automata is symmetry, detecting of which is often a difficult task and computationally expensive. This paper uses a swarm intelligence algorithm—Stochastic Diffusion Search—to extend and generalise previous works and detect partial symmetries in cellular automata generated patterns. The newly proposed technique tailored to address the spatially-independent symmetry problem is also capable of identifying the absolute point of symmetry (where symmetry holds from all perspectives) in a given pattern. Therefore, along with partially symmetric areas, the centre of symmetry is highlighted through the convergence of the agents of the swarm intelligence algorithm. Additionally this paper proposes the use of entropy and information gain measure as a complementary tool in order to offer insight into the structure of the input cellular automata generated images. It is shown that using these technique provides a comprehensive picture about both the structure of the images as well as the presence of any complete or spatially-independent symmetries. These technique are potentially applicable in the domain of aesthetic evaluation where symmetry is one of the measures.

Keywords

Search Space Cellular Automaton Cellular Automaton Information Gain Swarm Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    al-Rifaie, A.M., al-Rifaie, M.M.: Generative music with stochastic diffusion search. In: Johnson C., Carballal A., Correia J. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design, Lecture Notes in Computer Science, vol. 9027, pp. 1–14. Springer, Berlin (2015). doi: 10.1007/978-3-319-16498-4_1
  2. 2.
    al-Rifaie, F.M., al-Rifaie, M.M.: Investigating stochastic diffusion search in dna sequence assembly problem. In: Proceedings of SAI Intelligent Systems Conference. IEEE (2015)Google Scholar
  3. 3.
    al-Rifaie, M.M., Bishop, M.: Stochastic diffusion search review. In: Paladyn, Journal of Behavioral Robotics, vol. 4(3), pp. 155–173 (2013). doi: 10.2478/pjbr-2013-0021
  4. 4.
    al-Rifaie, M.M., Bishop, M., Blackwell, T.: Information sharing impact of stochastic diffusion search on differential evolution algorithm. J. Memet. Comput. 4, pp. 327–338 (2012). doi: 10.1007/s12293-012-0094-y
  5. 5.
    al-Rifaie, M.M., Bishop, M., Caines, S.: Creativity and autonomy in swarm intelligence systems. J. Cogn. Comput. 4, pp. 320–331 (2012). doi: 10.1007/s12559-012-9130-y
  6. 6.
    Andrienko, Yu. A., Brilliantov, N.V., Kurths, J.: Complexity of two-dimensional patterns. Eur. Phys. J. B 15(3), 539–546 (2000)Google Scholar
  7. 7.
    Atallah, M.J.: On symmetry detection. Comput. IEEE Trans. 100(7), 663–666 (1985)Google Scholar
  8. 8.
    Bates, J.E., Shepard, H.K.: Measuring complexity using information fluctuation. Phys. Lett. A 172(6), 416–425 (1993)CrossRefGoogle Scholar
  9. 9.
    Bauerly, M., Liu, Y.: Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics. Int. J. Man-Mach. Stud. 64(8), 670–682 (2006)Google Scholar
  10. 10.
    Behrens, R.: Design in the Visual Arts. Prentice-Hall, Upper-Saddle River (1984)Google Scholar
  11. 11.
    Bishop, J.: Stochastic searching networks. In: Proceedings of the 1st IEE Conference on Artificial Neural Networks, pp. 329–331. London, UK (1989)Google Scholar
  12. 12.
    Bishop, J., Torr, P.: The stochastic search network. Neural Networks for Images. Speech and Natural Language, pp. 370–387. Chapman & Hall, New York (1992)Google Scholar
  13. 13.
    Branke, J., Schmidt, C., Schmeck, H.: Efficient fitness estimation in noisy environments. In: Spector, L. (ed.) Genetic and Evolutionary Computation Conference, Morgan Kaufmann, Burlington (2001)Google Scholar
  14. 14.
    Carroll, M. J. (eds.): HCI Models, Theories, and Frameworks: Toward a multidisciplinary Science. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, New York (2006)Google Scholar
  16. 16.
    Dawkins, R.: The blind watchmaker. Norton & Company, New York (1986)Google Scholar
  17. 17.
    Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for evolutionary algorithms. Int. J. 79, 403–416 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gangestad, S.W., Thornhill, R., Yeo, R.A.: Facial attractiveness, developmental stability, and fluctuating asymmetry. Ethol Sociobiol. 15(2), 73–85 (1994)Google Scholar
  19. 19.
    Hinton, G.F.: A parallel computation that assigns canonical object-based frames of reference. In: Proceedings of the 7th International Joint Conference on Artificial intelligence-Vol. 2, pp. 683–685. Morgan Kaufmann Publishers, Burlington (1981)Google Scholar
  20. 20.
    Javaheri Javid, M.A., Blackwell, T., Zimmer, R., Al Rifaie, M.M.: Spatial Complexity Measure for Characterising Cellular Automata Generated 2D Patterns. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015, Coimbra, Portugal, September 8–11, 2015. Lecture Notes in Artificial Intelligence, vol. 9273, pp. 201–212. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Jiang, H., Ngo, C.W., Tan, H.K.: Gestalt-based feature similarity measure in trademark database. Pattern Recognit. 39(5), 988–1001 (2006)CrossRefGoogle Scholar
  22. 22.
    Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9, 3–12 (2005)CrossRefGoogle Scholar
  23. 23.
    Lee, S., Liu, Y.: Curved glide-reflection symmetry detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 266–278 (2012)CrossRefGoogle Scholar
  24. 24.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado P. (eds.) The Art of Artificial Evolution, Natural Computing Series, pp. 3–37. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Leyton, M.: Symmetry, Causality, Mind. MIT Press, Cambridge (1992)Google Scholar
  26. 26.
    Linz, P.: An Introduction to Formal Languages and Automata. Jones & Bartlett Publishers, Burlington (2001)Google Scholar
  27. 27.
    Liu, Y.: Computational symmetry. In: Proceedings of the CMU Robotics Institute (2000)Google Scholar
  28. 28.
    McCormack, J.: Interactive evolution of l-system grammars for computer graphics modelling. In Green, D., Bossomaier, T. (eds.) Complex Systems: From Biology to Computation pp. 118–130. ISO Press, Amsterdam (1993)Google Scholar
  29. 29.
    Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. (TOG) 25(3), 560–568 (2006)CrossRefGoogle Scholar
  30. 30.
    Møller A.P., Cuervo, J.J.: Asymmetry, size and sexual selection : meta-analysis, publication bias and factors affecting variation in relationships, p. 1. Oxford University Press, Oxford (1999)Google Scholar
  31. 31.
    Møller, A.P.R.T.: Bilateral symmetry and sexual selection: a meta-analysis. Am. Nat 151(2), 174–192 (1998)Google Scholar
  32. 32.
    Park, I.K., Lee, K.M., Lee, S.U.: Perceptual grouping of line features in 3-D space: a model-based framework. Pattern Recogn. 37(1), 145–159 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3d shapes. In: ACM Trans. Graph. (TOG), vol. 25, pp. 549–559. ACM, New York (2006)Google Scholar
  34. 34.
    Railton, P.: Aesthetic Value, Moral Value and the Ambitions of Naturalism In Aesthetics and Ethics, chap. 3. University of Maryland, College Park (2001)Google Scholar
  35. 35.
    Randy, T., Steven, G.: Human facial beauty. Human Nat. 4, 237–269 (1993)CrossRefGoogle Scholar
  36. 36.
    Shackelford, T.K.L.R.J.: Facial symmetry as an indicator of psychological emotional and physiological distress. J. Personal. Soc. Psychol. 722, 456–66 (1997)Google Scholar
  37. 37.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 & 623–656 (1948)Google Scholar
  38. 38.
    Shannon, C., et al.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1), 59–98 (1949)Google Scholar
  39. 39.
    Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM, New York (1994)Google Scholar
  40. 40.
    Sun, C., Sherrah, J.: 3d symmetry detection using the extended gaussian image. EEE Trans. Pattern Anal. Mach. Intell. 19(2), 164–168 (1997)CrossRefGoogle Scholar
  41. 41.
    Todd, S., Latham, W., Hughes, P.: Computer sculpture design and animation. J. Vis. Comput. Animat. 2(3), 98–105 (1991)CrossRefGoogle Scholar
  42. 42.
    Wackerbauer, R., Witt, A., Atmanspacher, H., Kurths, J., Scheingraber, H.: A comparative classification of complexity measures. Chaos, Solitons Fractals 4(1), 133–173 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Whitley, D., Rana, S., Dzubera, J., Mathias, K.E.: Evaluating evolutionary algorithms. Artif. Intell. 85(1–2), 245–276 (1996)CrossRefGoogle Scholar
  44. 44.
    Wolter, J.D., Woo, T.C., Volz, R.A.: Optimal algorithms for symmetry detection in two and three dimensions. Vis. Comput. 1(1), 37–48 (1985)CrossRefzbMATHGoogle Scholar
  45. 45.
    Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)CrossRefGoogle Scholar
  46. 46.
    Zhang, J.S., Chrzanowska-Jeske, M., Mishchenko, A., Burch, J.R.: Generalized symmetries in boolean functions: Fast computation and application to boolean matching. In: Proceedings of the IWLS. Citeseer (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohammad Ali Javaheri Javid
    • 1
    Email author
  • Wajdi Alghamdi
    • 1
  • Robert Zimmer
    • 1
  • Mohammad Majid al-Rifaie
    • 1
  1. 1.Department of Computing, GoldsmithsUniversity of LondonLondonUK

Personalised recommendations