Care of the Spinal Cord-Injured Patient

  • Christine E. Lotto
  • Michael S. WeinsteinEmail author


Despite advances in biomechanical engineering and safety devices, spinal cord injury (SCI) remains common in injured patients. Such injuries remain devastating events, often leaving patients with severe and life-changing disability. In acute and intensive care unit settings, the potential for neurologic compromise makes the rapid and accurate assessment, evaluation, and management of these patients of key importance in improving outcome.


American Spinal Injury Association grading scale Cervical spine clearance Respiratory dysfunction Spinal shock 


  1. 1.
    Bawa M, Fayssoux R. Vertebrae and spinal cord. In: Mattox KME, Feliciano D, editors. Trauma. 7th ed. New York: McGraw Hill; 2013.Google Scholar
  2. 2.
    Facts and figures at a glance. In: Birmingham UoAa, editor. National Spinal Cord Injury Statistical Center. Birmingham; 2014.Google Scholar
  3. 3.
    Jackson AB, Dijkers M, Devivo MJ, Poczatek RB. A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years. Arch Phys Med Rehabil. 2004;85(11):1740–8.CrossRefGoogle Scholar
  4. 4.
    Noonan VK, Fingas M, Farry A, Baxter D, Singh A, Fehlings MG, et al. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology. 2012;38(4):219–26.CrossRefGoogle Scholar
  5. 5.
    Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–6.CrossRefGoogle Scholar
  6. 6.
    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50(11):803–11.CrossRefGoogle Scholar
  8. 8.
    Cao Y, Chen Y, Devivo M. Lifetime direct costs after spinal cord injury. Top Spinal Cord Inj Rehabil. 2011;16:10–6.CrossRefGoogle Scholar
  9. 9.
    Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21(10):1355–70.CrossRefGoogle Scholar
  10. 10.
    Inaba K, Nosanov L, Menaker J, Bosarge P, Williams L, Turay D, et al. Prospective derivation of a clinical decision rule for thoracolumbar spine evaluation after blunt trauma: an American Association for the Surgery of Trauma Multi-Institutional Trials Group Study. J Trauma Acute Care Surg. 2015;78(3):459–65; discussion 65–7.CrossRefGoogle Scholar
  11. 11.
    Hadley MWB, Aarabi B, Dhall S, Gelb D, Hurlbert RJ, Rozzelle C, Ryken T, Theodore N. Clinical assessment following acute cervical spinal cord injury. Neurosurgery. 2013;72:40–53.CrossRefGoogle Scholar
  12. 12.
    American Spinal Injury Association/International Medical Society of Paraplegia. Internal standards for neurological and functional classification of spine cord injury. revth ed. Chicago: American Spine Injury Association; 1996.Google Scholar
  13. 13.
    Johnson GE. Spine injuries. In: Hall JSG, Wood L, editors. Principles of critical care. 3rd ed. New York: McGraw Hill; 2005.Google Scholar
  14. 14.
    Davis JW, Phreaner DL, Hoyt DB, Mackersie RC. The etiology of missed cervical spine injuries. J Trauma. 1993;34(3):342–6.CrossRefGoogle Scholar
  15. 15.
    Vaccaro AR, An HS, Lin S, Sun S, Balderston RA, Cotler JM. Noncontiguous injuries of the spine. J Spinal Disord. 1992;5(3):320–9.CrossRefGoogle Scholar
  16. 16.
    McCulloch PT, France J, Jones DL, Krantz W, Nguyen TP, Chambers C, et al. Helical computed tomography alone compared with plain radiographs with adjunct computed tomography to evaluate the cervical spine after high-energy trauma. J Bone Joint Surg Am. 2005;87(11):2388–94.Google Scholar
  17. 17.
    Berne JD, Velmahos GC, El-Tawil Q, Demetriades D, Asensio JA, Murray JA, et al. Value of complete cervical helical computed tomographic scanning in identifying cervical spine injury in the unevaluable blunt trauma patient with multiple injuries: a prospective study. J Trauma. 1999;47(5):896–902; discussion -3.CrossRefGoogle Scholar
  18. 18.
    Brown CV, Antevil JL, Sise MJ, Sack DI. Spiral computed tomography for the diagnosis of cervical, thoracic, and lumbar spine fractures: its time has come. J Trauma. 2005;58(5):890–5; discussion 5–6.CrossRefGoogle Scholar
  19. 19.
    Demaerel P. Magnetic resonance imaging of spinal cord trauma: a pictorial essay. Neuroradiology. 2006;48(4):223–32.CrossRefGoogle Scholar
  20. 20.
    Schoenfeld AJ, Bono CM, McGuire KJ, Warholic N, Harris MB. Computed tomography alone versus computed tomography and magnetic resonance imaging in the identification of occult injuries to the cervical spine: a meta-analysis. J Trauma. 2010;68(1):109–13; discussion 13–4.CrossRefGoogle Scholar
  21. 21.
    Stiell IG, Clement CM, McKnight RD, Brison R, Schull MJ, Rowe BH, et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med. 2003;349(26):2510–8.CrossRefGoogle Scholar
  22. 22.
    Tomycz ND, Chew BG, Chang YF, Darby JM, Gunn SR, Nicholas DH, et al. MRI is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the four-year experience of a level I trauma center. J Trauma. 2008;64(5):1258–63.CrossRefGoogle Scholar
  23. 23.
    Tan LA, Kasliwal MK, Traynelis VC. Comparison of CT and MRI findings for cervical spine clearance in obtunded patients without high impact trauma. Clin Neurol Neurosurg. 2014;120:23–6.CrossRefGoogle Scholar
  24. 24.
    Muchow RD, Resnick DK, Abdel MP, Munoz A, Anderson PA. Magnetic resonance imaging (MRI) in the clearance of the cervical spine in blunt trauma: a meta-analysis. J Trauma. 2008;64(1):179–89.CrossRefGoogle Scholar
  25. 25.
    Stevens RD, Bhardwaj A, Kirsch JR, Mirski MA. Critical care and perioperative management in traumatic spinal cord injury. J Neurosurg Anesthesiol. 2003;15(3):215–29.CrossRefGoogle Scholar
  26. 26.
    Jia X, Kowalski RG, Sciubba DM, Geocadin RG. Critical care of traumatic spinal cord injury. J Intensive Care Med. 2013;28(1):12–23.CrossRefGoogle Scholar
  27. 27.
    Hansebout RR, Kachur E. Acute traumatic spinal cord injury 2014 [14 Mar 2015]. Available from:
  28. 28.
    Blood pressure management after acute spinal cord injury. Neurosurgery. 2002;50(3 Suppl):S58–62.Google Scholar
  29. 29.
    Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg. 1997;87(2):239–46.CrossRefGoogle Scholar
  30. 30.
    Levi L, Wolf A, Belzberg H. Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery. 1993;33(6):1007–16; discussion 16–7.Google Scholar
  31. 31.
    Krassioukov A, Eng JJ, Warburton DE, Teasell R. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009;90(5):876–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Bilello JF, Davis JW, Cunningham MA, Groom TF, Lemaster D, Sue LP. Cervical spinal cord injury and the need for cardiovascular intervention. Arch Surg (Chicago, IL: 1960). 2003;138(10):1127–9.Google Scholar
  33. 33.
    Lehmann KG, Lane JG, Piepmeier JM, Batsford WP. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity. J Am Coll Cardiol. 1987;10(1):46–52.CrossRefGoogle Scholar
  34. 34.
    Sadaka F, Naydenov SK, Ponzillo JJ. Theophylline for bradycardia secondary to cervical spinal cord injury. Neurocrit Care. 2010;13(3):389–92.CrossRefGoogle Scholar
  35. 35.
    Gleason V, Kordek A, Weinstein M. Novel theophylline therapy for persistent bradycardia in severe cervical spinal cord injury. Crit Care Med. 2011;39:12.Google Scholar
  36. 36.
    Silver JR. Early autonomic dysreflexia. Spinal Cord. 2000;38(4):229–33.CrossRefGoogle Scholar
  37. 37.
    Gunduz H, Binak DF. Autonomic dysreflexia: an important cardiovascular complication in spinal cord injury patients. Cardiol J. 2012;19(2):215–9.CrossRefGoogle Scholar
  38. 38.
    Bycroft J, Shergill IS, Chung EA, Arya N, Shah PJ. Autonomic dysreflexia: a medical emergency. Postgrad Med J. 2005;81(954):232–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Claxton AR, Wong DT, Chung F, Fehlings MG. Predictors of hospital mortality and mechanical ventilation in patients with cervical spinal cord injury. Can J Anaesth J Can Anesth. 1998;45(2):144–9.CrossRefGoogle Scholar
  40. 40.
    Mueller G, de Groot S, van der Woude L, Hopman MT. Time-courses of lung function and respiratory muscle pressure generating capacity after spinal cord injury: a prospective cohort study. J Rehabil Med. 2008;40(4):269–76.CrossRefGoogle Scholar
  41. 41.
    Schilero GJ, Radulovic M, Wecht JM, Spungen AM, Bauman WA, Lesser M. A center’s experience: pulmonary function in spinal cord injury. Lung. 2014;192(3):339–46.CrossRefGoogle Scholar
  42. 42.
    Urmey W, Loring S, Mead J, Slutsky AS, Sarkarati M, Rossier A, et al. Upper and lower rib cage deformation during breathing in quadriplegics. J Appl Physiol (Bethesda, MD: 1985). 1986;60(2):618–22.CrossRefGoogle Scholar
  43. 43.
    Mortola JP, Sant’Ambrogio G. Motion of the rib cage and the abdomen in tetraplegic patients. Clin Sci Mol Med. 1978;54(1):25–32.Google Scholar
  44. 44.
    Scanlon PD, Loring SH, Pichurko BM, McCool FD, Slutsky AS, Sarkarati M, et al. Respiratory mechanics in acute quadriplegia. Lung and chest wall compliance and dimensional changes during respiratory maneuvers. Am Rev Respir Dis. 1989;139(3):615–20.CrossRefGoogle Scholar
  45. 45.
    Goldman JM, Williams SJ, Denison DM. The rib cage and abdominal components of respiratory system compliance in tetraplegic patients. Eur Respir J. 1988;1(3):242–7.Google Scholar
  46. 46.
    Spungen AM, Dicpinigaitis PV, Almenoff PL, Bauman WA. Pulmonary obstruction in individuals with cervical spinal cord lesions unmasked by bronchodilator administration. Paraplegia. 1993;31(6):404–7.Google Scholar
  47. 47.
    Schilero GJ, Grimm DR, Bauman WA, Lenner R, Lesser M. Assessment of airway caliber and bronchodilator responsiveness in subjects with spinal cord injury. Chest. 2005;127(1):149–55.CrossRefGoogle Scholar
  48. 48.
    Grimm DR, Chandy D, Almenoff PL, Schilero G, Lesser M. Airway hyperreactivity in subjects with tetraplegia is associated with reduced baseline airway caliber. Chest. 2000;118(5):1397–404.CrossRefGoogle Scholar
  49. 49.
    Wong SL, Shem K, Crew J. Specialized respiratory management for acute cervical spinal cord injury: a retrospective analysis. Top Spinal Cord Inj Rehabil. 2012;18(4):283–90.CrossRefGoogle Scholar
  50. 50.
    Harrop JS, Sharan AD, Scheid Jr EH, Vaccaro AR, Przybylski GJ. Tracheostomy placement in patients with complete cervical spinal cord injuries: American Spinal Injury Association Grade A. J Neurosurg. 2004;100(1 Suppl Spine):20–3.Google Scholar
  51. 51.
    Berney S, Bragge P, Granger C, Opdam H, Denehy L. The acute respiratory management of cervical spinal cord injury in the first 6 weeks after injury: a systematic review. Spinal Cord. 2011;49(1):17–29.CrossRefGoogle Scholar
  52. 52.
    Dalal K, DiMarco AF. Diaphragmatic pacing in spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):619–29, viii.CrossRefPubMedGoogle Scholar
  53. 53.
    Posluszny Jr JA, Onders R, Kerwin AJ, Weinstein MS, Stein DM, Knight J, et al. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014;76(2):303–9; discussion 9–10.CrossRefGoogle Scholar
  54. 54.
    Kaufman MR, Elkwood AI, Aboharb F, Cece J, Brown D, Rezzadeh K, et al. Diaphragmatic reinnervation in ventilator-dependent patients with cervical spinal cord injury and concomitant phrenic nerve lesions using simultaneous nerve transfers and implantable neurostimulators. J Reconstr Microsurg. 2015;31(5):391–5.CrossRefGoogle Scholar
  55. 55.
    Krieger LM, Krieger AJ. The intercostal to phrenic nerve transfer: an effective means of reanimating the diaphragm in patients with high cervical spine injury. Plast Reconstr Surg. 2000;105(4):1255–61.Google Scholar
  56. 56.
    Furlan JC, Fehlings MG. Role of screening tests for deep venous thrombosis in asymptomatic adults with acute spinal cord injury: an evidence-based analysis. Spine. 2007;32(17):1908–16.CrossRefGoogle Scholar
  57. 57.
    Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.CrossRefGoogle Scholar
  58. 58.
    Chung WS, Lin CL, Chang SN, Chung HA, Sung FC, Kao CH. Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with spinal cord injury: a nationwide cohort prospective study. Thromb Res. 2014;133(4):579–84.CrossRefGoogle Scholar
  59. 59.
    Green D, Chen D, Chmiel JS, Olsen NK, Berkowitz M, Novick A, et al. Prevention of thromboembolism in spinal cord injury: role of low molecular weight heparin. Arch Phys Med Rehabil. 1994;75(3):290–2.CrossRefGoogle Scholar
  60. 60.
    Chung SB, Lee SH, Kim ES, Eoh W. Incidence of deep vein thrombosis after spinal cord injury: a prospective study in 37 consecutive patients with traumatic or nontraumatic spinal cord injury treated by mechanical prophylaxis. J Trauma. 2011;71(4):867–70; discussion 70–1.CrossRefGoogle Scholar
  61. 61.
    Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, et al. Deep venous thrombosis and thromboembolism in patients with cervical spinal cord injuries. Neurosurgery. 2013;72 Suppl 2:244–54.CrossRefGoogle Scholar
  62. 62.
    Kinney TB, Rose SC, Valji K, Oglevie SB, Roberts AC. Does cervical spinal cord injury induce a higher incidence of complications after prophylactic Greenfield inferior vena cava filter usage? J Vasc Interv Radiol JVIR. 1996;7(6):907–15.CrossRefGoogle Scholar
  63. 63.
    Balshi JD, Cantelmo NL, Menzoian JO. Complications of caval interruption by Greenfield filter in quadriplegics. J Vasc Surg. 1989;9(4):558–62.CrossRefGoogle Scholar
  64. 64.
    Rosenthal D, Wellons ED, Levitt AB, Shuler FW, O'Conner RE, Henderson VJ. Role of prophylactic temporary inferior vena cava filters placed at the ICU bedside under intravascular ultrasound guidance in patients with multiple trauma. J Vasc Surg. 2004;40(5):958–64.CrossRefGoogle Scholar
  65. 65.
    Gorman PH, Qadri SF, Rao-Patel A. Prophylactic inferior vena cava (IVC) filter placement may increase the relative risk of deep venous thrombosis after acute spinal cord injury. J Trauma. 2009;66(3):707–12.CrossRefGoogle Scholar
  66. 66.
    Kidane B, Madani AM, Vogt K, Girotti M, Malthaner RA, Parry NG. The use of prophylactic inferior vena cava filters in trauma patients: a systematic review. Injury. 2012;43(5):542–7.CrossRefGoogle Scholar
  67. 67.
    Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322(20):1405–11.CrossRefGoogle Scholar
  68. 68.
    Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597–604.CrossRefGoogle Scholar
  69. 69.
    Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg. 1998;89(5):699–706.CrossRefGoogle Scholar
  70. 70.
    Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassie P, Thicoipe M, et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38(2):71–6.CrossRefGoogle Scholar
  71. 71.
    Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA. 1984;251(1):45–52.CrossRefGoogle Scholar
  72. 72.
    Tsutsumi S, Ueta T, Shiba K, Yamamoto S, Takagishi K. Effects of the Second National Acute Spinal Cord Injury Study of high-dose methylprednisolone therapy on acute cervical spinal cord injury-results in spinal injuries center. Spine. 2006;31(26):2992–6; discussion 7.CrossRefGoogle Scholar
  73. 73.
    Pollard ME, Apple DF. Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia. Spine. 2003;28(1):33–9.CrossRefGoogle Scholar
  74. 74.
    Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2013;72 Suppl 2:93–105.CrossRefGoogle Scholar
  75. 75.
    Thibault-Halman G, Casha S, Singer S, Christie S. Acute management of nutritional demands after spinal cord injury. J Neurotrauma. 2011;28(8):1497–507.CrossRefPubMedGoogle Scholar
  76. 76.
    Dvorak MF, Noonan VK, Belanger L, Bruun B, Wing PC, Boyd MC, et al. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine. 2004;29(9):E175–80.CrossRefGoogle Scholar
  77. 77.
    Krogh K, Mosdal C, Laurberg S. Gastrointestinal and segmental colonic transit times in patients with acute and chronic spinal cord lesions. Spinal Cord. 2000;38(10):615–21.CrossRefGoogle Scholar
  78. 78.
    Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, et al. Nutritional support after spinal cord injury. Neurosurgery. 2013;72 Suppl 2:255–9.CrossRefGoogle Scholar
  79. 79.
    Rowan CJ, Gillanders LK, Paice RL, Judson JA. Is early enteral feeding safe in patients who have suffered spinal cord injury? Injury. 2004;35(3):238–42.CrossRefGoogle Scholar
  80. 80.
    Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care (London, England). 2012;16(5):R203.CrossRefGoogle Scholar
  81. 81.
    Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: executive summary. Crit Care Med. 2009;37(5):1757–61.CrossRefGoogle Scholar
  82. 82.
    Lehman LB. Life support for patients with cervical-level quadriplegia. N Engl J Med. 1993;329(9):663–4.CrossRefGoogle Scholar
  83. 83.
    Patterson DR, Miller-Perrin C, McCormick TR, Hudson LD. When life support is questioned early in the care of patients with cervical-level quadriplegia. N Engl J Med. 1993;328(7):506–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of SurgeryThomas Jefferson University HospitalPhiladelphiaUSA

Personalised recommendations