Glycemic Control and Insulin Resistance

  • Richard N. Lesperance
  • Oscar D. GuillamondeguiEmail author


Insulin resistance and hyperglycemia are common in critically ill patients in the intensive care unit (ICU). Single-center studies initially showed impressive benefits to intensive control of serum glucose levels, but this benefit has failed to be replicated in most larger trials. The increased incidence of hypoglycemia in the intensive control arms of these trials may have contributed to lack of benefit. Hypoglycemia itself is an independent risk factor for ICU mortality. Most specialty societies recommend maintaining serum glucose between 140 and 180 mg/dl in critically ill patients. Samples obtained from capillaries and those analyzed on hand-held point of care monitors are less accurate than centrally obtained samples. The development of continuous glucose monitoring and closed-loop delivery systems may eventually decrease the nursing workload associated with intensive glucose control.


Insulin Glucose Intensive care unit (ICU) Hyperglycemia 


  1. 1.
    CDC. 2014 National Diabetes Statistics Report. 2014 [4/13/15].
  2. 2.
    Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.CrossRefGoogle Scholar
  3. 3.
    Saberi F, Heyland D, Lam M, Rapson D, Jeejeebhoy K. Prevalence, incidence, and clinical resolution of insulin resistance in critically ill patients: an observational study. JPEN J Parenter Enteral Nutr. 2008;32(3):227–35.CrossRefGoogle Scholar
  4. 4.
    Egi M, Finfer S, Bellomo R. Glycemic control in the ICU. Chest. 2011;140(1):212–20.CrossRefGoogle Scholar
  5. 5.
    Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues. 2004;15(1):45–62.CrossRefGoogle Scholar
  6. 6.
    Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med. 1995;98(1):75–84.CrossRefGoogle Scholar
  7. 7.
    McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;17(1):107–24.CrossRefGoogle Scholar
  8. 8.
    Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation. 1999;99(20):2626–32.CrossRefGoogle Scholar
  9. 9.
    Ramos M, Khalpey Z, Lipsitz S, Steinberg J, Panizales MT, Zinner M, et al. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann Surg. 2008;248(4):585–91.PubMedGoogle Scholar
  10. 10.
    Wahl WL, Taddonio M, Maggio PM, Arbabi S, Hemmila MR. Mean glucose values predict trauma patient mortality. J Trauma. 2008;65(1):42–7. discussion 7–8.CrossRefGoogle Scholar
  11. 11.
    Latham R, Lancaster AD, Covington JF, Pirolo JS, Thomas Jr CS. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect Control Hosp Epidemiol. 2001;22(10):607–12.CrossRefGoogle Scholar
  12. 12.
    Berlanga-Acosta J, Schultz GS, Lopez-Mola E, Guillen-Nieto G, Garcia-Siverio M, Herrera-Martinez L. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. Biomed Res Int. 2013;2013:256043.CrossRefGoogle Scholar
  13. 13.
    Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–42.CrossRefGoogle Scholar
  14. 14.
    Koh GC, Peacock SJ, van der Poll T, Wiersinga WJ. The impact of diabetes on the pathogenesis of sepsis. Eur J Clin Microbiol Infect Dis. 2012;31(4):379–88.CrossRefGoogle Scholar
  15. 15.
    van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.CrossRefGoogle Scholar
  16. 16.
    Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.CrossRefGoogle Scholar
  17. 17.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.CrossRefGoogle Scholar
  18. 18.
    Preiser JC, Devos P, Ruiz-Santana S, Melot C, Annane D, Groeneveld J, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–48.CrossRefGoogle Scholar
  19. 19.
    Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  20. 20.
    Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.CrossRefGoogle Scholar
  21. 21.
    Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ Can Med Assoc J (Journal de l'Association Medicale Canadienne). 2009;180(8):821–7. Apr 14.CrossRefGoogle Scholar
  22. 22.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefGoogle Scholar
  23. 23.
    Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care (Lond Engl). 2010;14(2):207.CrossRefGoogle Scholar
  24. 24.
    Polderman KH, Girbes AR, Thijs LG, Strack van Schijndel RJ. Accuracy and reliability of APACHE II scoring in two intensive care units problems and pitfalls in the use of APACHE II and suggestions for improvement. Anaesthesia. 2001;56(1):47–50.CrossRefGoogle Scholar
  25. 25.
    Lacherade JC, Jacqueminet S, Preiser JC. An overview of hypoglycemia in the critically ill. J Diabetes Sci Technol. 2009;3(6):1242–9.CrossRefGoogle Scholar
  26. 26.
    Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sakaguchi S, Ishii Y. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28(3):584–7.CrossRefGoogle Scholar
  27. 27.
    Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117(4):910–8.CrossRefGoogle Scholar
  28. 28.
    Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34(3):850–6.CrossRefGoogle Scholar
  29. 29.
    Herlein JA, Morgan DA, Phillips BG, Haynes WG, Sivitz WI. Antecedent hypoglycemia, catecholamine depletion, and subsequent sympathetic neural responses. Endocrinology. 2006;147(6):2781–8.CrossRefGoogle Scholar
  30. 30.
    Keller-Wood ME, Shinsako J, Dallman MF. Inhibition of the adrenocorticotropin and corticosteroid responses to hypoglycemia after prior stress. Endocrinology. 1983;113(2):491–6.CrossRefGoogle Scholar
  31. 31.
    Moheet A, Kumar A, Eberly LE, Kim J, Roberts R, Seaquist ER. Hypoglycemia-associated autonomic failure in healthy humans: comparison of two vs three periods of hypoglycemia on hypoglycemia-induced counterregulatory and symptom response 5 days later. J Clin Endocrinol Metab. 2014;99(2):664–70.CrossRefGoogle Scholar
  32. 32.
    Adler GK, Bonyhay I, Failing H, Waring E, Dotson S, Freeman R. Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes. 2009;58(2):360–6.CrossRefGoogle Scholar
  33. 33.
    Nordin C. The proarrhythmic effect of hypoglycemia: evidence for increased risk from ischemia and bradycardia. Acta Diabetol. 2014;51(1):5–14.CrossRefGoogle Scholar
  34. 34.
    Robinson RT, Harris ND, Ireland RH, Macdonald IA, Heller SR. Changes in cardiac repolarization during clinical episodes of nocturnal hypoglycaemia in adults with type 1 diabetes. Diabetologia. 2004;47(2):312–5.CrossRefGoogle Scholar
  35. 35.
    Dotson S, Freeman R, Failing HJ, Adler GK. Hypoglycemia increases serum interleukin-6 levels in healthy men and women. Diabetes Care. 2008;31(6):1222–3.CrossRefGoogle Scholar
  36. 36.
    Moheet A, Seaquist ER. Hypoglycemia as a driver of cardiovascular risk in diabetes. Curr Atheroscler Rep. 2013;15(9):351.CrossRefGoogle Scholar
  37. 37.
    Hutton RA, Mikhailidis D, Dormandy KM, Ginsburg J. Platelet aggregation studies during transient hypoglycaemia: a potential method for evaluating platelet function. J Clin Pathol. 1979;32(5):434–8.CrossRefGoogle Scholar
  38. 38.
    Dieguez G, Fernandez N, Garcia JL, Garcia-Villalon AL, Monge L, Gomez B. Role of nitric oxide in the effects of hypoglycemia on the cerebral circulation in awake goats. Eur J Pharmacol. 1997;330(2–3):185–93.CrossRefGoogle Scholar
  39. 39.
    Wang J, Alexanian A, Ying R, Kizhakekuttu TJ, Dharmashankar K, Vasquez-Vivar J, et al. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase. Arterioscler Thromb Vasc Biol. 2012;32(3):712–20.CrossRefGoogle Scholar
  40. 40.
    Hermanides J, Bosman RJ, Vriesendorp TM, Dotsch R, Rosendaal FR, Zandstra DF, et al. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;38(6):1430–4.CrossRefGoogle Scholar
  41. 41.
    Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35(10):2262–7.CrossRefGoogle Scholar
  42. 42.
    Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc. 2010;85(3):217–24.CrossRefGoogle Scholar
  43. 43.
    Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105(2):244–52.CrossRefGoogle Scholar
  44. 44.
    Waeschle RM, Moerer O, Hilgers R, Herrmann P, Neumann P, Quintel M. The impact of the severity of sepsis on the risk of hypoglycaemia and glycaemic variability. Crit Care (Lond Engl). 2008;12(5):R129.CrossRefGoogle Scholar
  45. 45.
    Ali NA, O’Brien Jr JM, Dungan K, Phillips G, Marsh CB, Lemeshow S, et al. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36(8):2316–21.CrossRefGoogle Scholar
  46. 46.
    Dossett LA, Cao H, Mowery NT, Dortch MJ, Morris Jr JM, May AK. Blood glucose variability is associated with mortality in the surgical intensive care unit. Am Surg. 2008;74(8):679–85. discussion 85.PubMedGoogle Scholar
  47. 47.
    Bellomo R, Egi M. What is a NICE-SUGAR for patients in the intensive care unit? Mayo Clin Proc. 2009;84(5):400–2.CrossRefGoogle Scholar
  48. 48.
    Tiruvoipati R, Chiezey B, Lewis D, Ong K, Villanueva E, Haji K, et al. Stress hyperglycemia may not be harmful in critically ill patients with sepsis. J Crit Care. 2012;27(2):153–8.CrossRefGoogle Scholar
  49. 49.
    Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care Med. 2013;41(6):e93–4.CrossRefGoogle Scholar
  50. 50.
    Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40(12):3251–76.CrossRefGoogle Scholar
  51. 51.
    Fahy BG, Sheehy AM, Coursin DB. Glucose control in the intensive care unit. Crit Care Med. 2009;37(5):1769–76.CrossRefGoogle Scholar
  52. 52.
    Finkielman JD, Oyen LJ, Afessa B. Agreement between bedside blood and plasma glucose measurement in the ICU setting. Chest. 2005;127(5):1749–51.CrossRefGoogle Scholar
  53. 53.
    Kanji S, Buffie J, Hutton B, Bunting PS, Singh A, McDonald K, et al. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit Care Med. 2005;33(12):2778–85.CrossRefGoogle Scholar
  54. 54.
    Scott MG, Bruns DE, Boyd JC, Sacks DB. Tight glucose control in the intensive care unit: are glucose meters up to the task? Clin Chem. 2009;55(1):18–20.CrossRefGoogle Scholar
  55. 55.
    Sylvain HF, Pokorny ME, English SM, Benson NH, Whitley TW, Ferenczy CJ, et al. Accuracy of fingerstick glucose values in shock patients. Am J Crit Care. 1995;4(1):44–8.PubMedGoogle Scholar
  56. 56.
    Critchell CD, Savarese V, Callahan A, Aboud C, Jabbour S, Marik P. Accuracy of bedside capillary blood glucose measurements in critically ill patients. Intensive Care Med. 2007;33(12):2079–84.CrossRefGoogle Scholar
  57. 57.
    Okabayashi T, Shima Y. Are closed-loop systems for intensive insulin therapy ready for prime time in the ICU? Curr Opin Clin Nutr Metab Care. 2014;17(2):190–9.CrossRefGoogle Scholar
  58. 58.
    Fahy BG, Coursin DB. An analysis: hyperglycemic intensive care patients need continuous glucose monitoring-easier said than done. J Diabetes Sci Technol. 2008;2(2):201–4.CrossRefGoogle Scholar
  59. 59.
    Xiao Z, Tan X, Chen X, Chen S, Zhang Z, Zhang H, et al. An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J Biomed Health Inform. 2015;19:910–9. Mar 23.PubMedGoogle Scholar
  60. 60.
    Wernerman J, Desaive T, Finfer S, Foubert L, Furnary A, Holzinger U, et al. Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit Care (Lond Engl). 2014;18(3):226.CrossRefGoogle Scholar
  61. 61.
    Boom DT, Sechterberger MK, Rijkenberg S, Kreder S, Bosman RJ, Wester JP, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial. Crit Care (Lond Engl). 2014;18(4):453.CrossRefGoogle Scholar
  62. 62.
    Eslami S, Abu-Hanna A, de Jonge E, de Keizer NF. Tight glycemic control and computerized decision-support systems: a systematic review. Intensive Care Med. 2009;35(9):1505–17.CrossRefGoogle Scholar
  63. 63.
    Fogel SL, Baker CC. Effects of computerized decision support systems on blood glucose regulation in critically ill surgical patients. J Am Coll Surg. 2013;216(4):828–33. discussion 33–5.CrossRefGoogle Scholar
  64. 64.
    Van Herpe T, Mesotten D, Wouters PJ, Herbots J, Voets E, Buyens J, et al. LOGIC-insulin algorithm-guided versus nurse-directed blood glucose control during critical illness: the LOGIC-1 single-center, randomized, controlled clinical trial. Diabetes Care. 2013;36(2):188–94.CrossRefGoogle Scholar
  65. 65.
    Steil GM, Deiss D, Shih J, Buckingham B, Weinzimer S, Agus MS. Intensive care unit insulin delivery algorithms: why so many? How to choose? J Diabetes Sci Technol. 2009;3(1):125–40.CrossRefGoogle Scholar
  66. 66.
    Wilson M, Weinreb J, Hoo GW. Intensive insulin therapy in critical care: a review of 12 protocols. Diabetes Care. 2007;30(4):1005–11.CrossRefGoogle Scholar
  67. 67.
    Kalfon P, Giraudeau B, Ichai C, Guerrini A, Brechot N, Cinotti R, et al. Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial. Intensive Care Med. 2014;40(2):171–81.CrossRefGoogle Scholar
  68. 68.
    Tsukamoto Y, Okabayashi T, Hanazaki K. Progressive artificial endocrine pancreas: the era of novel perioperative blood glucose control for surgery. Surg Today. 2011;41(10):1344–51.CrossRefGoogle Scholar
  69. 69.
    Mibu K, Yatabe T, Hanazaki K. Blood glucose control using an artificial pancreas reduces the workload of ICU nurses. J Artif Organs. 2012;15(1):71–6.CrossRefGoogle Scholar
  70. 70.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.CrossRefGoogle Scholar
  71. 71.
    Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Endocr Pract (Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists). 2009;15(4):353–69.CrossRefGoogle Scholar
  72. 72.
    Qaseem A, Chou R, Humphrey LL, Shekelle P. Inpatient glycemic control: best practice advice from the Clinical Guidelines Committee of the American College of Physicians. Am J Med Qual. 2014;29(2):95–8.CrossRefGoogle Scholar
  73. 73.
    Kavanagh BP, McCowen KC. Causes and effects of stress hyperglycemia. N Engl J Med. 2016;363:2540–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Richard N. Lesperance
    • 1
  • Oscar D. Guillamondegui
    • 1
    Email author
  1. 1.Department of SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations