Source Control and Supporting Therapeutics: Integrating Bacterial Invasion, Host Defense, and Clinical Interventions with Source Control Procedures

  • Lewis J. Kaplan
  • Addison K. MayEmail author
  • Lena M. Napolitano


While the concept of source control is not new and is in widespread practice, some of the underpinning that defines the practice has evolved. While source control is commonly interpreted as the drainage of purulent material, removal of infected medical devices, control of GI tract perforation, and debridement of devitalized tissue, all of those elements are reactionary in nature and are accompanied by adjunctive antibiotics for variable courses. Over the last decade, major advances have occurred in understanding the molecular basis of disease pathogenesis as well as the host response to injury, inflammation, and infection. These advances may enable proactive measures to be undertaken that target specific elements of host defense to optimize patient outcome in the emergency department (ED), operating room (OR), intensive care unit (ICU), or general ward. This chapter will address how one may integrate standard source control practices with recent data on potentially controllable elements that may enable host defense success.


Infectious diseases Antibiotic stewardship Multidrug-resistant organisms Biofilm Host defenses 


  1. 1.
    Marshall JC, Maier RV, Jimenez M, Dellinger EP. Source control in the management of severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S513–26.PubMedGoogle Scholar
  2. 2.
    Schein M, Marshall J. Source control for surgical infections. World J Surg. 2004;28:639–45.Google Scholar
  3. 3.
    Eachempati SR, Hydo LJ, Shou J, Barie PS. The pathogen of ventilator-associated pneumonia does not influence the mortality rate of surgical intensive care unit patients treated with a rotational antibiotic system. Surg Infect (Larchmt). 2010;11(1):13–20.Google Scholar
  4. 4.
    Fry DE, Barie PS. The changing face of Staphylococcus aureus: a continuing surgical challenge. Surg Infect (Larchmt). 2011;12(3):191–203.Google Scholar
  5. 5.
    Johnson MT, Reichley R, Hoppe-Bauer J, et al. Impact of previous antibiotic therapy on outcome of Gram-negative severe sepsis. Crit Care Med. 2011;39:1859–65.PubMedGoogle Scholar
  6. 6.
    Coakley BA, Sussman ES, Wolfson TS, et al. Postoperative antibiotics correlate with worse outcomes after appendectomy for nonperforated appendicitis. J Am Coll Surg. 2011;213:778–83.PubMedGoogle Scholar
  7. 7.
    Zimmerman LH, Tyburski JG, Glowniak J, et al. Impact of evaluating antibiotic concentrations in abdominal abscesses percutaneously drained. Am J Surg. 2011;201:348–52.PubMedGoogle Scholar
  8. 8.
    Shaw A, Keefe FJ. Genetic and environmental determinants of postthoracotomy pain syndrome. Curr Op Anesthesiol. 2008;21(1):8–11.Google Scholar
  9. 9. Accessed 14 Jan 2013.
  10. 10.
    Schein M, Marshall JC, editors. Source control. Heidelberg: Springer-Verlag; 2002.Google Scholar
  11. 11.
    Jimenez MF, Marshall JC, International Sepsis Forum. Source control in the management of sepsis. Intensive Care Med. 2001;27 Suppl 1:S49–62.PubMedGoogle Scholar
  12. 12.
    Betsch A, Wiskirchen J, Tru¨benbach J, et al. CT-guided percutaneous drainage of intra-abdominal abscesses: APACHE III score stratification of 1-year results. Eur Radiol. 2002;12:2883–9.PubMedGoogle Scholar
  13. 13.
    van Santvoort HC, Besselink MG, Bakker OJ, Hofker HS, Boermeester MA, Dejong CH, van Goor H, Schaapherder AF, van Eijck CH, Bollen TL, van Ramshorst B, Nieuwenhuijs VB, Timmer R, Laméris JS, Kruyt PM, Manusama ER, van der Harst E, van der Schelling GP, Karsten T, Hesselink EJ, van Laarhoven CJ, Rosman C, Bosscha K, de Wit RJ, Houdijk AP, van Leeuwen MS, Buskens E, Gooszen HG, Dutch Pancreatitis Study Group. A step-up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med. 2010;362(16):1491–502.PubMedGoogle Scholar
  14. 14.
    Andersson RE, Petzold MG. Nonsurgical treatment of appendiceal abscess or phlegmon: a systematic review and meta-analysis. Ann Surg. 2007;246:741–8.PubMedGoogle Scholar
  15. 15.
    Simillis C, Symeonides P, Shorthouse AJ, Tekkis PP. A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery. 2010;147(6):818–29. Epub 2010 Feb 10.PubMedGoogle Scholar
  16. 16.
    Mason RJ, Moazzez A, Sohn H, Katkhouda N. Meta-analysis of randomized trials comparing antibiotic therapy with appendectomy for acute uncomplicated (no abscess or phlegmon) appendicitis. Surg Infect (Larchmt). 2012;13(2):74–84. Epub 2012 Feb 24.Google Scholar
  17. 17.
    Ansaloni L, Catena F, Coccolini F, Ercolani G, Gazzotti F, Pasqualini E, Pinna AD. Surgery versus conservative antibiotic treatment in acute appendicitis: a systematic review and meta-analysis of randomized controlled trials. Dig Surg. 2011;28(3):210–21. Epub 2011 May 3.PubMedGoogle Scholar
  18. 18.
    Varadhan KK, Humes DJ, Neal KR, Lobo DN. Antibiotic therapy versus appendectomy for acute appendicitis: a meta-analysis. World J Surg. 2010;34(2):199–209.PubMedGoogle Scholar
  19. 19.
    Wacha H, Hau T, Dittmer R, et al. Risk factors associated with intra-abdominal infections: a prospective multicenter study. Langenbecks Arch Surg. 1999;384:24–32.PubMedGoogle Scholar
  20. 20.
    Mulier S, Penninckx F, Verwaest C, et al. Factors affecting mortality in generalized postoperative peritonitis: multivariate analysis in 96 patients. World J Surg. 2003;27:379–84.PubMedGoogle Scholar
  21. 21.
    Kollef M, Micek S, Hampton N, Doherty JA, Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dise. 2012;54(12):1739–46.Google Scholar
  22. 22.
    Barie PS, Williams MD, McCollam JS, Bates BM, Qualy RL, Lowry SF, Fry DE, PROWESS Surgical Evaluation Committee. Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg. 2004;188(3):212–20.PubMedGoogle Scholar
  23. 23.
    Bobo LD, Dubberke ER, Kollef M. Clostridium difficile in the ICU: the struggle continues. Chest. 2011;140(6):1643–53.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Harbrecht BG, Franklin GA, Shirley RM, Smith JW, Miller FB, Richardson JD. Statewide experience with clostridium difficile colitis in academic and non-academic medical centers. Surg Infect. 2012;13(2):88–92.Google Scholar
  25. 25.
    Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–84.PubMedGoogle Scholar
  26. 26.
    McDonald LC, Killgore GE, Thompson A, Owens Jr RC, Kazakova SV, Sambol SP, Johnson S, Gerding DN. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):2433–41. Epub 2005 Dec 1.PubMedGoogle Scholar
  27. 27.
    Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, René P, Monczak Y, Dascal A. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353(23):2442–9. Epub 2005 Dec 1.PubMedGoogle Scholar
  28. 28.
    Rosenberger LH, Hranjec T, Politano AD, Swenson BR, Metzger R, Bonatti H, Sawyer RG. Effective cohorting and “superisolation” in a single intensive care unit in response to an outbreak of diverse multi-drug-resistant organisms. Surg Infect. 2011;12(5):345–50.Google Scholar
  29. 29.
    Becher RD, Hoth JJ, Neff LP, Rebo JJ, Martin RS, Miller PR. Multidrug-resistant pathogens and pneumonia: comparing the trauma and surgical intensive care units. Surg Infect. 2011;12(4):267–72.Google Scholar
  30. 30.
    Siegel JD, Rhinehart E, Jackson M, Chiarello L; the Healthcare infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in healthcare settings, 2006. CDC Healthcare infection Control Practices Advisory Committee (HICPAC). Accessed 14 Jan 2013.
  31. 31.
    Tseng SH, Lee CM, Lin TY, Chang SC, Chang FY. Emergence and spread of multi-drug resistant organisms: think globally and act locally. J Microbiol Immunol Infect. 2011;44(3):157–65.PubMedGoogle Scholar
  32. 32.
    Hospenthal DR, Crouch HK, English JF, Leach F, Pool J, Conger NG, Whitman TJ, Wortmann GW, Robertson JL, Murray CK. Multidrug-resistant bacterial colonization of combat-injured personnel at admission to medical centers after evacuation from Afghanistan and Iraq. J Trauma. 2011;71(1 Suppl):S52–7.PubMedGoogle Scholar
  33. 33.
    Bolon M. Hand hygiene. Infect Dis Clin N Am. 2011;25(1):21–43.Google Scholar
  34. 34.
    Sakamoto F, Yamada H, Suzuki C, et al. Increased use of alcohol-based hand sanitizers and successful eradication of methicillin-resistant Staphylococcus aureus from a neonatal intensive care unit: a multivariate time series analysis. Am J Infect Control. 2010;38(7):529–34.PubMedGoogle Scholar
  35. 35.
    Dellit TH, Owens RC, McGowan Jr JE, Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF, Brennan PJ, Billeter M, Hooton TM, Infectious Diseases Society of America, Society for Healthcare Epidemiology of America. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159–77.PubMedGoogle Scholar
  36. 36.
    George P, Morris AM. Pro/con debate: should antimicrobial stewardship programs be adopted universally in the intensive care unit? Crit Care (London, England). 2010;14(1):205.Google Scholar
  37. 37.
    Zillich AJ, Sutherland JM, Wilson SJ, et al. Antimicrobial use control measures to prevent and control antimicrobial resistance in US hospitals. Infect Control Hosp Epidemiol. 2006;27(10):1088–95.PubMedGoogle Scholar
  38. 38.
    Sandiumenge A, Diaz E, Rodriguez A, et al. Impact of diversity of antibiotic use on the development of antimicrobial resistance. J Antimicrob Chemother. 2006;57(6):1197–204.PubMedGoogle Scholar
  39. 39.
    Takesue Y, Nakajima K, Ichiki K, et al. Impact of a hospital-wide programme of heterogeneous antibiotic use on the development of antibiotic-resistant Gram-negative bacteria. J Hosp Infect. 2010;75(1):28–32.PubMedGoogle Scholar
  40. 40.
    Sandiumenge A, Lisboa T, Gomez F, et al. Effect of antibiotic diversity on ventilator-associated pneumonia caused by ESKAPE organisms. Chest. 2011;140:643–51.PubMedGoogle Scholar
  41. 41.
    Zhang Z-Q, Song Y-L, Chen Z-H, et al. Deletion of aquaporin 5 aggravates acute lung injury induced by Pseudomonas aeruginosa. J Trauma. 2011;71:1305–11.PubMedGoogle Scholar
  42. 42.
    Le Berre R, Nguyen S, Nowak E, et al. Relative contributions of three main virulence factors in Pseudomonas aeruginosa pneumonia. Crit Care Med. 2011;39:2113–20.PubMedGoogle Scholar
  43. 43.
    Fink D, Romanowski K, Valuckaite V, et al. Pseudomonas aeruginosa potentiates the lethal effect of intestinal ischemia-reperfusion injury: the role of in vivo virulence activation. J Trauma. 2011;71:1575–82.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Bhargava N, Sharma P, Capalash N. Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol. 2010;36(4):349–60.PubMedGoogle Scholar
  45. 45.
    Sperandio V. Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signalling. Expert Rev Anti Infect Ther. 2007;5(2):271–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27(9):1017–32.PubMedGoogle Scholar
  47. 47.
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10(1):39–50.Google Scholar
  48. 48.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:318–22.Google Scholar
  49. 49.
    Atkinson S, Camara M, Williams P. N-acylhomoserine lactones, quorum sensing and biofilm development in Gram-negative bacteria. Accessed 1 Mar 2012.
  50. 50.
    Kobayashi H. Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections. Treat Respir Med. 2005;4(4):241–53. Review.PubMedGoogle Scholar
  51. 51.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.PubMedGoogle Scholar
  52. 52.
    Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lee JH, Park JH, Kim JA, Neupane GP, Cho MH, Lee CS, Lee J. Low concentrations on honey reduce biofilm formation, quorum sensing, and virulence in Escherecia coli O157:H7. Biofouling. 2011;27(10):1095–104.PubMedGoogle Scholar
  54. 54.
    Sigurdsson G, Fleming RM, Heinken A, Thiele I. A systems biology approach to drug targets in pseudomonas aeruginosa biofilm. PLoS ONE. 2012;7(4):e34337. Epub 2012 Apr 16.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55–65.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kaplan LJ, Bailey H, Kellum J. The etiology and significance of metabolic acidosis in trauma patients. Curr Op Crit Care. 1999;5(6):458–63.Google Scholar
  57. 57.
    Brill SA, Stewart TR, Brundage SI, Schreiber MA. Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock. 2002;17(6):459–62.PubMedGoogle Scholar
  58. 58.
    Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kellum JA, Song M, Li J. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol. 2004;286(4):R686–92. Epub 2003 Dec 24.PubMedGoogle Scholar
  60. 60.
    Kaplan LJ, Cheung NH-T, Maerz LL, Lui FY, Schuster KM, Luckianow G, Davis KA. A physicochemical approach to acid-base balance in critically ill trauma patients minimizes errors and reduces inappropriate plasma volume expansion. J Trauma. 2009;66:1045–51.PubMedGoogle Scholar
  61. 61.
    Maung AA, Kaplan LJ. Mechanical Ventilation. Eds: SW Ashley, WG Cance, GJ Jurkovich, LM Napolitano, JH Pemberton, NJ Soper, SJ Swanson, RJ Valentine. In: ACS Surgery; Accessed 19 Feb 2012.
  62. 62.
    Gattinoni L, Chiumello D, Russo R. Reduced tidal volumes and lung protective ventilator strategies: where do we go from here? Curr Op Crit Care. 2002;8(1):45–50.Google Scholar
  63. 63.
    Kaplan LJ, Frangos S. Acid-base abnormalities in the ICU: part II. Crit Care. 2005;9(2):198–203.PubMedGoogle Scholar
  64. 64.
    Cotton BA, Reddy N, Hatch QM, LeFebvre E, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Holcomb JB. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomies. Ann Surg. 2011;254(4):598–605.PubMedGoogle Scholar
  65. 65.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, SAFE Study Investigators The SAFE study investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.Google Scholar
  66. 66.
    Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39:386–91.Google Scholar
  67. 67.
    Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.PubMedPubMedCentralGoogle Scholar
  68. 68.
    McIntyre L, Fergusson DA, Rowe B, Cook DJ, Arabi Y, Bagshaw SM, Emond M, Finfer S, Fox-Robichaud A, Gray A, Green R, Hebert P, Lang E, Marshall J, Stiell I, Tinmouth A, Pagliarello J, Turgeon A, Walsh T, Worster A, Zarychanski R, for the Canadian Critical Care Trials Group. The PRECISE RCT: evolution of an early septic shock fluid resuscitation trial. Transfu Med Rev. 2012;26(4):333–41.Google Scholar
  69. 69.
    Urbaniak JR, Seaber AV, Chen LE. Assessment of ischemia and reperfusion injury. Clin Orthop Relat Res. 1997; 334:30–6; Stotlz JF, Donner M. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Schweirzerische Medizinische Wachenschrift – Supplementum 1991; 43:41–9.Google Scholar
  70. 70.
    Reinhart WH, Gaudenz R, Walter R. Acidosis induced by lactate, pyruvate or HCl increases blood viscosity. J Crit Care. 2002;17(1):68–73.PubMedGoogle Scholar
  71. 71.
    Wolny M, Grzybek M, Bok E, Chorzalska A, Lenoir M, Czogalla A, Adamczyk K, Kolondra A, Diakowski W, Overduin M, Sikorski AF. Key amino acid resides of ankyrin-sensitive phosphatidylethanolamine/phosphatidylcholine-lipid binding of beta1-spectrin. PLoS ONE. 2011;6(6):e21538.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kabaso D, Shlomovitz R, Auth T, Lew VL, Gov NS. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization. Biophys J. 2010;99(3):808–16.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Condon M, Maheswari S, Xu D-Z, et al. Intravenous injection of mesenteric lymph produced during hemorrhagic shock decreases RBC deformability in the rat. J Trauma. 2011;70:489–95.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMedGoogle Scholar
  76. 76.
    Daugherty EL, Hongyan L, Taichman D, et al. Abdominal compartment syndrome is common in medical intensive care unit patients receiving large volume resuscitation. J Intensive Care Med. 2007;22:294–9.PubMedGoogle Scholar
  77. 77.
    O’Mara MS, Slater H, Goldfarb IW, et al. A prospective, randomized evaluation of intra-abdominal pressures with crystalloid and colloid resuscitation in burn patients. J Trauma. 2005;58:1011–8.PubMedGoogle Scholar
  78. 78.
    Balogh Z, Moore FA, Moore EE, et al. Secondary abdominal compartment syndrome: a potential threat for all trauma clinicians. Injury. 2007;38:272–9.PubMedGoogle Scholar
  79. 79.
    Klein MB, Hayden D, Elson C, et al. The association between fluid administration and outcome following major burn: a multicenter study. Ann Surg. 2007;245:622–8.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Alam HB. An update on fluid resuscitation. Scand J Surg. 2006;95:136–45.PubMedGoogle Scholar
  81. 81.
    Committee on fluid resuscitation for combat casualties. In: Fluid resuscitation: state of the science for treating combat casualties and civilian trauma. Report of the Institute of Medicine. Washington, DC: National Academies Press; 1999.Google Scholar
  82. 82.
    Cotton BA, Guy JS, Morris JA, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.PubMedGoogle Scholar
  83. 83.
    Alam HB, Velmahos GC. New trends in resuscitation. Curr Probl Surg. 2011;48(8):531–64.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Shander A, Fleischer LA, Barie PS, et al. Clinical and economic burden of postoperative pulmonary complications: patient safety summit on definition, risk-reducing interventions, and preventive strategies. Crit Care Med. 2011;39:2163–72.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Barie PS, Hydo LJ, Shou J, Eachempati SR. Decreasing magnitude of multiple organ dysfunction syndrome despite increasingly severe critical surgical illness: a 17-year longitudinal study. J Trauma. 2008;65:1227–35.PubMedGoogle Scholar
  86. 86.
    Peng Z, Singbarti K, Simon P, et al. Blood purification in sepsis: a new paradigm. Contrib Nephrol. 2010;165:322–8.PubMedGoogle Scholar
  87. 87.
    House AA, Ronco C. Extracorporeal blood purification in sepsis and sepsis-related acute kidney injury. Blood Purif. 2008;26:30–5.PubMedGoogle Scholar
  88. 88.
    Genton L, Pichard C. Protein catabolism and requirements in severe illness. Int J Vitam Nutr Res. 2011;81(2–3):143–52.PubMedGoogle Scholar
  89. 89.
    Slotwinski R, Slotwinska S, Kedziora S, Balan BJ. Innate immunity signaling pathways: links between in=mmunonutrition and responses to sepsis. Arch Immunol Ther Exp. 2011;59(2):139–50.Google Scholar
  90. 90.
    Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P, NIH NHLBI Acute Respiratory Distress Syndrome Network of Investigators. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81. Epub 2011 Oct 5.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Cerantola Y, Hubner M, Grass F, Demartines N, Schafer M. Immunonutrition in gastrointestinal surgery. Br J Surg. 2011;98(1):37–48.PubMedGoogle Scholar
  92. 92.
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N, Rock P. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803. Epub 2012 Feb 5.Google Scholar
  93. 93.
    Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G, American College of Critical Care Medicine, A.S.P.E.N. Board of Directors. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med. 2009;37(5):1757–61. Review.Google Scholar
  94. 94.
    Kutsogiannis J, Alberda C, Gramlich L, Cahill NE, Wang M, Day AG, Dhaliwal R, Heyland DK. Early use of supplemental parenteral nutrition in critically ill patients: results of an international multicenter observational study. Crit Care Med. 2011;39(12):2691–9.Google Scholar
  95. 95.
    Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17. Epub 2011 Jun 29.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207 Suppl 1:E103–11.PubMedGoogle Scholar
  97. 97.
    Nieves E, Tobon LF, Rios DI, et al. Bacterial translocation in abdominal trauma and postoperative infections. J Trauma. 2011;71:1258–61.PubMedGoogle Scholar
  98. 98.
    Winters BD, Eberlein M, Leung J, et al. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38:1276–83.PubMedGoogle Scholar
  99. 99.
    Landelle C, Lepape A, Francias A, et al. Nosocomial infection after septic shock among intensive care unit patients. Infect Control Hosp Epidemiol. 2008;29:1054–65.PubMedGoogle Scholar
  100. 100.
    Carson WF, Cavassani KA, Dou Y, Kunkle SL. Epigenetic regulation of immune cell finctions during post-septic immunosuppression. Epigenetics. 2011;6:273–83.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Cartwright N, McMaster SK, Sorrentino R, et al. Elucidation of toll-like receptor and adapter protein signaling in vascular dysfunction induced by gram-positive Staphylococcus aureus or gram-negative Eschericia coli. Shock. 2007;27(1):40–7.PubMedGoogle Scholar
  102. 102.
    Kimura F, Shimizu H, Yoshidome H, et al. Immunosuppression following surgical and traumatic injury. Surg Today. 2010;40:793–808.PubMedGoogle Scholar
  103. 103.
    Wen H, Hogaboam CM, Gauldie J, Kunkle SL. Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile. Am J Pathol. 2006;168:1940–50.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Huang H, Evankovich J, Yan W, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011; 54:999–1008; Tang D, Kang R, Livesey KM, et al. Endogenous HMGB 1 regulates autophagy. J Cell Biol. 2010; 190:881–92.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major nediators of death in sepsis. Nat Med. 2009;15:1318–21.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Carson WF, Cavassani KA, Ito T, et al. Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur J Immunol. 2010;40:998–1010.PubMedPubMedCentralGoogle Scholar
  108. 108.
    El Gazzar M, Yoza BK, Chen X, et al. G9a and HP couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283:32198–208.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Li Y, Alam HB. Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. Adv Exp Med Biol. 2012;710:107–33.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Li Y, Liu B, Fukudome EY, Kochanek AR, Finkelstein RA, Chong W, Jin G, Lu J, deMoya MA, Velmahos GC, Alam HB. Surviving lethal septic shock without fluid resuscitation in a rodent model. Surgery. 2010;148(2):246–54. Epub 2010 Jun 19.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Shah S, Henriksen MA. A novel disrupter of telomere silencing 1-like (DOT1L) interaction is required for signal transducer and activator transcription (STAT1)-activated gene expression. J Biol Chem. 2011;286:41195–204.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Gao H, Evans TW, Finney SJ. Bench-to-bedside review: sepsis, severe sepsis and septic shock – does the nature of the infecting organism matter? Crit Care. 2008;12(3):213.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Xiao W, Mindrinos MN, Seok J, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–90.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman 2nd SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Lewis J. Kaplan
    • 1
  • Addison K. May
    • 2
    Email author
  • Lena M. Napolitano
    • 3
  1. 1.Department of Surgery, Perelman School of MedicineUniversity of Pennsylvania, Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaUSA
  2. 2.Division of Trauma and Surgical Critical Care, Department of SurgeryVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of SurgeryUniversity of Michigan Health SystemAnn ArborUSA

Personalised recommendations