Nutrition in the Surgical ICU Patient

  • Beth E. TaylorEmail author
  • Craig M. Coopersmith


Nutrition is an imperative component in the care of the surgical ICU patient. The benefit of either enteral nutrition (EN) or parenteral nutrition (PN) is greater in those patients determined to be malnourished or at high nutrition risk. Given the non-nutritional benefits, early EN (within 24–48 h of surgical ICU admission) is the preferred route of feeding. An immunonutrition EN formulation, used for the initial 7–10 days, may confer additional benefit in trauma and postoperative patients. In malnourished or high nutrition risk patients, in whom EN is not feasible, PN should be started with 48 h of admission to the surgical ICU. In patients with severe sepsis or septic shock, PN and EN initiation should be delayed.


Nutrition Enteral Parenteral 


  1. 1.
    Border JR, Chenier R, McManamy RH, La Duca J, Seibel R, Birkhahn R, et al. Multiple systems organ failure: muscle fuel deficit with visceral protein malnutrition. Surg Clin North Am. 1976;56(5):1147–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Cerra FB. The hypermetabolism organ failure complex. World J Surg. 1987;11(2):173–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, Ungaro R, Davis R, Cuenca AG, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014;76(1):21–9; discussion 29–30.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.PubMedCrossRefGoogle Scholar
  6. 6.
    Baracos V, Kazemi-Bajestani SM. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int J Biochem Cell Biol. 2013;45(10):2302–8.PubMedCrossRefGoogle Scholar
  7. 7.
    White JV, Guenter P, Jensen G, Malone A, Schofield M, Academy of Nutrition and Dietetics Malnutrition Work Group, et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Acad Nutr Diet. 2012;112(5):730–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Jensen GL, Compher C, Sullivan DH, Mullin GE. Recognizing malnutrition in adults: definitions and characteristics, screening, assessment, and team approach. JPEN J Parenter Enter Nutr. 2013;37(6):802–7.CrossRefGoogle Scholar
  9. 9.
    Kondrup J, Johansen N, Plum LM, Bak L, Larsen IH, Martinsen A, et al. Incidence of nutritional risk and causes of inadequate nutritional care in hospitals. Clin Nutr. 2002;21(6):461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):R268.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Heyland DK, Dhaliwal R, Wang M, Day AG. The prevalence of iatrogenic underfeeding in the nutritionally ‘at-risk’ critically ill patient: results of an international, multicenter, prospective study. Clin Nutr. 2015;34(4):659–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Jie B, Jiang ZM, Nolan MT, Zhu SN, Yu K, Kondrup J. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition. 2012;28(10):1022–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Davis CJ, Sowa D, Keim KS, Kinnare K, Peterson S. The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center. JPEN J Parenter Enter Nutr. 2012;36(2):197–204.CrossRefGoogle Scholar
  14. 14.
    Barber L, Barrett R, Lichtwark G. Validity and reliability of a simple ultrasound approach to measure medial gastrocnemius muscle length. J Anat. 2011;218(6):637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care. 2014;17(5):389–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Frankenfield DC, Coleman A, Alam S, Cooney RN. Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN J Parenter Enter Nutr. 2009;33(1):27–36.CrossRefGoogle Scholar
  18. 18.
    McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enter Nutr. 2009;33(3):277–316.CrossRefGoogle Scholar
  19. 19.
    Stucky CC, Moncure M, Hise M, Gossage CM, Northrop D. How accurate are resting energy expenditure prediction equations in obese trauma and burn patients? JPEN J Parenter Enter Nutr. 2008;32(4):420–6.CrossRefGoogle Scholar
  20. 20.
    Kross EK, Sena M, Schmidt K, Stapleton RD. A comparison of predictive equations of energy expenditure and measured energy expenditure in critically ill patients. J Crit Care. 2012;27(3):321.e5–12.CrossRefGoogle Scholar
  21. 21.
    Cheatham ML, Safcsak K, Brzezinski SJ, Lube MW. Nitrogen balance, protein loss, and the open abdomen. Crit Care Med. 2007;35(1):127–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Diaz Jr JJ, Cullinane DC, Dutton WD, Jerome R, Bagdonas R, Bilaniuk JW, et al. The management of the open abdomen in trauma and emergency general surgery: part 1-damage control. J Trauma. 2010;68(6):1425–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Hourigan LA, Linfoot JA, Chung KK, Dubick MA, Rivera RL, Jones JA, et al. Loss of protein, immunoglobulins, and electrolytes in exudates from negative pressure wound therapy. Nutr Clin Pract. 2010;25(5):510–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Braga M, Gianotti L, Vignali A, Carlo VD. Preoperative oral arginine and n-3 fatty acid supplementation improves the immunometabolic host response and outcome after colorectal resection for cancer. Surgery. 2002;132(5):805–14.PubMedCrossRefGoogle Scholar
  25. 25.
    McClave SA, Kozar R, Martindale RG, Heyland DK, Braga M, Carli F, et al. Summary points and consensus recommendations from the North American Surgical Nutrition Summit. JPEN J Parenter Enter Nutr. 2013;37(5 Suppl):99S–105.CrossRefGoogle Scholar
  26. 26.
    Kang W, Kudsk KA. Is there evidence that the gut contributes to mucosal immunity in humans? JPEN J Parenter Enter Nutr. 2007;31(3):246–58.CrossRefGoogle Scholar
  27. 27.
    Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg. 2002;183(4):390–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Ammori BJ. Importance of the early increase in intestinal permeability in critically ill patients. Eur J Surg. 2002;168(11):660–1; author reply 662.PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg. 2009;13(3):569–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Bost RB, Tjan DH, van Zanten AR. Timing of (supplemental) parenteral nutrition in critically ill patients: a systematic review. Ann Intensive Care. 2014;2:4–31. 014-0031-y. eCollection 2014.CrossRefGoogle Scholar
  31. 31.
    Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Osland E, Yunus RM, Khan S, Memon MA. Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: a meta-analysis. JPEN J Parenter Enter Nutr. 2011;35(4):473–87.CrossRefGoogle Scholar
  34. 34.
    Lassen K, Kjaeve J, Fetveit T, Trano G, Sigurdsson HK, Horn A, et al. Allowing normal food at will after major upper gastrointestinal surgery does not increase morbidity: a randomized multicenter trial. Ann Surg. 2008;247(5):721–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Pearl ML, Frandina M, Mahler L, Valea FA, DiSilvestro PA, Chalas E. A randomized controlled trial of a regular diet as the first meal in gynecologic oncology patients undergoing intraabdominal surgery. Obstet Gynecol. 2002;100(2):230–4.PubMedGoogle Scholar
  36. 36.
    Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011;212(3):385–99. 399.e1.PubMedCrossRefGoogle Scholar
  37. 37.
    Osland E, Hossain MB, Khan S, Memon MA. Effect of timing of pharmaconutrition (immunonutrition) administration on outcomes of elective surgery for gastrointestinal malignancies: a systematic review and meta-analysis. JPEN J Parenter Enter Nutr. 2014;38(1):53–69.CrossRefGoogle Scholar
  38. 38.
    Marimuthu K, Varadhan KK, Ljungqvist O, Lobo DN. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg. 2012;255(6):1060–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Visser M, Vermeulen MA, Richir MC, Teerlink T, Houdijk AP, Kostense PJ, et al. Imbalance of arginine and asymmetric dimethylarginine is associated with markers of circulatory failure, organ failure and mortality in shock patients. Br J Nutr. 2012;107(10):1458–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Caparros T, Lopez J, Grau T. Early enteral nutrition in critically ill patients with a high-protein diet enriched with arginine, fiber, and antioxidants compared with a standard high-protein diet. The effect on nosocomial infections and outcome. JPEN J Parenter Enter Nutr. 2001;25(6):299–308; discussion 308–9.CrossRefGoogle Scholar
  42. 42.
    Visser M, Davids M, Verberne HJ, Kok WE, Tepaske R, Cocchieri R, et al. Nutrition before, during, and after surgery increases the arginine:asymmetric dimethylarginine ratio and relates to improved myocardial glucose metabolism: a randomized controlled trial. Am J Clin Nutr. 2014;99(6):1440–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Galban C, Montejo JC, Mesejo A, Marco P, Celaya S, Sanchez-Segura JM, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 2000;28(3):643–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Ochoa JB. Arginine deficiency caused by myeloid cells: importance, identification and treatment. Nestle Nutr Inst Work Ser. 2013;77:29–45.CrossRefGoogle Scholar
  45. 45.
    Plank LD, Mathur S, Gane EJ, Peng SL, Gillanders LK, McIlroy K, et al. Perioperative immunonutrition in patients undergoing liver transplantation: a randomized double-blind trial. Hepatology. 2015;61(2):639–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Klek S, Sierzega M, Szybinski P, Szczepanek K, Scislo L, Walewska E, et al. Perioperative nutrition in malnourished surgical cancer patients – a prospective, randomized, controlled clinical trial. Clin Nutr. 2011;30(6):708–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Davies AR, Morrison SS, Bailey MJ, Bellomo R, Cooper DJ, Doig GS, et al. A multicenter, randomized controlled trial comparing early nasojejunal with nasogastric nutrition in critical illness. Crit Care Med. 2012;40(8):2342–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Koopmann MC, Kudsk KA, Szotkowski MJ, Rees SM. A team-based protocol and electromagnetic technology eliminate feeding tube placement complications. Ann Surg. 2011;253(2):287–302.PubMedCrossRefGoogle Scholar
  49. 49.
    Kozar RA, McQuiggan MM, Moore EE, Kudsk KA, Jurkovich GJ, Moore FA. Postinjury enteral tolerance is reliably achieved by a standardized protocol. J Surg Res. 2002;104(1):70–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Doig GS, Simpson F, Finfer S, Delaney A, Davies AR, Mitchell I, et al. Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA. 2008;300(23):2731–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Barr J, Hecht M, Flavin KE, Khorana A, Gould MK. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125(4):1446–57.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Heyland DK, Murch L, Cahill N, McCall M, Muscedere J, Stelfox HT, et al. Enhanced protein-energy provision via the enteral route feeding protocol in critically ill patients: results of a cluster randomized trial. Crit Care Med. 2013;41(12):2743–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor B, Brody R, Denmark R, Southard R, Byham-Gray L. Improving enteral delivery through the adoption of the “Feed Early Enteral Diet adequately for Maximum Effect (FEED ME)” protocol in a surgical trauma ICU: a quality improvement review. Nutr Clin Pract. 2014;29(5):639–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Boelens PG, Heesakkers FF, Luyer MD, van Barneveld KW, de Hingh IH, Nieuwenhuijzen GA, et al. Reduction of postoperative ileus by early enteral nutrition in patients undergoing major rectal surgery: prospective, randomized, controlled trial. Ann Surg. 2014;259(4):649–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg. 1998;228(5):652–63.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nelson R, Edwards S, Tse B. Prophylactic nasogastric decompression after abdominal surgery. Cochrane Database Syst Rev. 2005;(1):CD004929.Google Scholar
  57. 57.
    Sindell S, Causey MW, Bradley T, Poss M, Moonka R, Thirlby R. Expediting return of bowel function after colorectal surgery. Am J Surg. 2012;203(5):644–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Macarone Palmieri R, Amodio PM, Rizzello M, Goglia A, Piciollo M, Piccioni E, et al. Does the nasogastric tube has a role in elective colo-rectal surgery? G Chir. 2012;33(3):58–61.PubMedGoogle Scholar
  59. 59.
    Han-Geurts IJ, Hop WC, Kok NF, Lim A, Brouwer KJ, Jeekel J. Randomized clinical trial of the impact of early enteral feeding on postoperative ileus and recovery. Br J Surg. 2007;94(5):555–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Yang S, Wu X, Yu W, Li J. Early enteral nutrition in critically ill patients with hemodynamic instability: an evidence-based review and practical advice. Nutr Clin Pract. 2014;29(1):90–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Wells DL. Provision of enteral nutrition during vasopressor therapy for hemodynamic instability: an evidence-based review. Nutr Clin Pract. 2012;27(4):521–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Marvin RG, McKinley BA, McQuiggan M, Cocanour CS, Moore FA. Nonocclusive bowel necrosis occurring in critically ill trauma patients receiving enteral nutrition manifests no reliable clinical signs for early detection. Am J Surg. 2000;179(1):7–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Melis M, Fichera A, Ferguson MK. Bowel necrosis associated with early jejunal tube feeding: a complication of postoperative enteral nutrition. Arch Surg. 2006;141(7):701–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Munshi IA, Steingrub JS, Wolpert L. Small bowel necrosis associated with early postoperative jejunal tube feeding in a trauma patient. J Trauma. 2000;49(1):163–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Schloerb PR, Wood JG, Casillan AJ, Tawfik O, Udobi K. Bowel necrosis caused by water in jejunal feeding. JPEN J Parenter Enter Nutr. 2004;28(1):27–9.CrossRefGoogle Scholar
  66. 66.
    Messiner R, Griffen M, Crass R. Small bowel necrosis related to enteral nutrition after duodenal surgery. Am Surg. 2005;71(12):993–5.PubMedGoogle Scholar
  67. 67.
    Spalding DR, Behranwala KA, Straker P, Thompson JN, Williamson RC. Non-occlusive small bowel necrosis in association with feeding jejunostomy after elective upper gastrointestinal surgery. Ann R Coll Surg Engl. 2009;91(6):477–82.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, et al. Guidelines for the management of severe traumatic brain injury. XII. Nutr J Neurotrauma. 2007;24 Suppl 1:S77–82.Google Scholar
  69. 69.
    Dickerson RN, Pitts SL, Maish GO, Schroeppel TJ, Magnotti LJ, Croce MA, et al. A reappraisal of nitrogen requirements for patients with critical illness and trauma. J Trauma Acute Care Surg. 2012;73(3):549–57.PubMedCrossRefGoogle Scholar
  70. 70.
    Burlew CC, Moore EE, Cuschieri J, Jurkovich GJ, Codner P, Nirula R, et al. Who should we feed? Western Trauma Association multi-institutional study of enteral nutrition in the open abdomen after injury. J Trauma Acute Care Surg. 2012;73(6):1380–7; discussion 1387–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Collier B, Guillamondegui O, Cotton B, Donahue R, Conrad A, Groh K, et al. Feeding the open abdomen. JPEN J Parenter Enter Nutr. 2007;31(5):410–5.CrossRefGoogle Scholar
  72. 72.
    Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg. 2015;52(4):147–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Sandstrom R, Drott C, Hyltander A, Arfvidsson B, Schersten T, Wickstrom I, et al. The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg. 1993;217(2):185–95.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Heyland DK, MacDonald S, Keefe L, Drover JW. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA. 1998;280(23):2013–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Kutsogiannis J, Alberda C, Gramlich L, Cahill NE, Wang M, Day AG, et al. Early use of supplemental parenteral nutrition in critically ill patients: results of an international multicenter observational study. Crit Care Med. 2011;39(12):2691–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Braunschweig C, Liang H, Sheean P. Indications for administration of parenteral nutrition in adults. Nutr Clin Pract. 2004;19(3):255–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.PubMedCrossRefGoogle Scholar
  79. 79.
    Elke G, Schadler D, Engel C, Bogatsch H, Frerichs I, Ragaller M, et al. Current practice in nutritional support and its association with mortality in septic patients – results from a national, prospective, multicenter study. Crit Care Med. 2008;36(6):1762–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Elke G, Kuhnt E, Ragaller M, Schadler D, Frerichs I, Brunkhorst FM, et al. Enteral nutrition is associated with improved outcome in patients with severe sepsis. A secondary analysis of the VISEP trial. Med Klin Intensivmed Notfmed. 2013;108(3):223–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Jeffery KM, Harkins B, Cresci GA, Martindale RG. The clear liquid diet is no longer a necessity in the routine postoperative management of surgical patients. Am Surg. 1996;62(3):167–70.PubMedGoogle Scholar
  82. 82.
    Morowitz MJ, Babrowski T, Carlisle EM, Olivas A, Romanowski KS, Seal JB, et al. The human microbiome and surgical disease. Ann Surg. 2011;253(6):1094–101.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bengmark S. Gut microbiota, immune development and function. Pharmacol Res. 2013;69(1):87–113.PubMedCrossRefGoogle Scholar
  84. 84.
    Alverdy J, Zaborina O, Wu L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care. 2005;8(2):205–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Alverdy JC. During critical illness the gut does not pass the acid test. Crit Care. 2012;16(5):150.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Petrof EO, Dhaliwal R, Manzanares W, Johnstone J, Cook D, Heyland DK. Probiotics in the critically ill: a systematic review of the randomized trial evidence. Crit Care Med. 2012;40(12):3290–302.PubMedCrossRefGoogle Scholar
  87. 87.
    Rayes N, Seehofer D, Theruvath T, Mogl M, Langrehr JM, Nussler NC, et al. Effect of enteral nutrition and synbiotics on bacterial infection rates after pylorus-preserving pancreatoduodenectomy: a randomized, double-blind trial. Ann Surg. 2007;246(1):36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhang Y, Chen J, Wu J, Chalson H, Merigan L, Mitchell A. Probiotic use in preventing postoperative infection in liver transplant patients. Hepatobiliary Surg Nutr. 2013;2(3):142–7.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Alpers D, Taylor B, Bier D, Klein S, editors. Manual of nutritional therapeutics. 6th ed. Philadelphia: Wolters Kluwer; 2015.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Food and NutritionBarnes-Jewish HospitalSt. LouisUSA
  2. 2.Department of SurgeryEmory University HospitalAtlantaUSA

Personalised recommendations