Acute Respiratory Distress Syndrome and Lung Protective Ventilation

  • Sarah E. Greer
  • Rebecca E. Duncan
  • Molly R. Deane
  • Nader M. Habashi
  • Maureen McCunn


Surgical patients are at high risk for development of acute respiratory distress syndrome (ARDS). While there is vast literature on this topic, there continues to be uncertainty in several areas regarding optimal strategies to manage (and prevent) ARDS. This chapter will review concepts of “open lung” ventilation, including current evidence for low tidal volume (VT) ventilation and the use of positive end-expiratory pressure (PEEP). Alternate modes of ventilation, including airway pressure release ventilation (APRV), which has shown encouraging results when applied early in the course of mechanical ventilation (MV), will also be discussed. In addition, the evidence for pharmacologic and non-pharmacologic adjuncts to MV for patients with refractory hypoxemia will be outlined, including neuromuscular blocking agents (NMBA), conservative fluid management, corticosteroids, inhaled vasoactive medications, prone positioning, and extracorporeal life support (ECLS). Finally, a special section is devoted to discussion of ventilatory strategies for patients intraoperatively, highlighting the importance of a multidisciplinary approach to ARDS and application of critical care principles regardless of patient location.


ARDS Lung protective ventilation APRV Adjuncts to MV Intraoperative ventilation 


  1. 1.
    Ashbaugh D, Bigelow DB, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290(7511):319–23.CrossRefGoogle Scholar
  2. 2.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.PubMedCrossRefGoogle Scholar
  3. 3.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.Google Scholar
  4. 4.
    Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Hedenstierna G, Strandberg A, Brismar B, Lundquist H, Svensson L, Tokics L. Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiology. 1985;62(3):247–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Carney D, DiRocco J, Nieman G. Dynamic alveolar mechanics and ventilator-induced lung injury. Crit Care Med. 2005;33(Supplement):S122–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. New Engl J Med. 2005;353(16):1685–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Martin M, Salim A, Murray J, Demetriades D, Belzberg H, Rhee P. The decreasing incidence and mortality of acute respiratory distress syndrome after injury: a 5-year observational study. J Trauma. 2005;59(5):1107–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Li G, Malinchoc M, Cartin-Ceba R, Venkata CV, Kor DJ, Peters SG, et al. Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med. 2011;183(1):59–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferguson ND, Slutsky AS. Point: counterpoint: high-frequency ventilation is/is not the optimal physiological approach to ventilate ARDS patients. J Appl Physiol. 2008;104:1230–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Dos Santos CC, Slutsky AS. The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol. 2006;68:585–618.PubMedCrossRefGoogle Scholar
  14. 14.
    Tremblay LN, Slutsky AS. Ventilation-induced lung injury: from barotrauma to biotrauma. Proc Assoc Am Physicians. 1998;110:482–8.PubMedGoogle Scholar
  15. 15.
    Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32:24–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Fan E, Villar J, Slutsky AS. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11(1):85.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157(6):1721–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282(1):54–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18(6):319–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.Google Scholar
  21. 21.
    Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. New Engl J Med. 1998;338(6):347–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34(5):1311–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Burns K, Adhikari N, Slutsky AS, Guyatt GH, Villar J, Zhang H, et al. Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: a systematic review and meta-analysis. PLoS One. 2011;6(1):e14623.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Hemmila MR, Napolitano LM. Severe respiratory failure: advanced treatment options. Crit Care Med. 2006;34(9 Suppl):S278–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Esan A, Hess DR, Raoof S, George L, Sessler CN. Severe hypoxemic respiratory failure: part 1—ventilatory strategies. Chest J. 2010;137(5):1203–16.CrossRefGoogle Scholar
  27. 27.
    Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31(6):776–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA. 2005;294(22):2889–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Serpa Neto A, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure 1–4. Am Rev Res Dis. 1974;110(5):556–65.Google Scholar
  32. 32.
    Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats 1–3. Am Rev Res Dis. 1985;132(4):880–4.Google Scholar
  33. 33.
    Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991;143(5 Pt 1):1115–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Eisner MD, Thompson BT, Schoenfeld D, Anzueto A, Matthay MA. Airway pressures and early barotrauma in patients with acute lung injury and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165(7):978–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Weg JG, Anzueto A, Balk RA, Wiedemann HP, Pattishall EN, Schork MA, et al. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):341–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Anzueto A, Frutos–Vivar F, Esteban A, Alía I, Brochard L, Stewart T, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 2004;30(4):612–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Res Dis. 1988;137(5):1159–64.CrossRefGoogle Scholar
  38. 38.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Mercat A, Richard J, Vielle B, Jaber S, Osman D, Diehl J, et al. Expiratory pressure (express) study group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Lapinsky SE, Mehta S. Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care. 2005;9(1):60–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Hess DR, Bigatello LM. Lung recruitment: the role of recruitment maneuvers. Respir Care. 2002;47(3):308–17; discussion 17–8.PubMedGoogle Scholar
  44. 44.
    Hickling K, Henderson S, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16(6):372–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22(10):1530–9.CrossRefGoogle Scholar
  46. 46.
    Bidani A, Tzouanakis AE, Cardenas VJ, Zwischenberger JB. Permissive hypercapnia in acute respiratory failure. JAMA. 1994;272(12):957–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Bulger EM, Jurkovich GJ, Gentilello LM, Maier RV. Current clinical options for the treatment and management of acute respiratory distress syndrome. J Trauma Acute Care Surg. 2000;48(3):562–72.CrossRefGoogle Scholar
  48. 48.
    Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34(1):1–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Broccard AF, Hotchkiss JR, Vannay C, Markert M, Sauty A, Feihl F, et al. Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med. 2001;164(5):802–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Metnitz PG, Metnitz B, Moreno RP, Bauer P, Del Sorbo L, Hoermann C, et al. Epidemiology of mechanical ventilation: analysis of the SAPS 3 database. Intensive Care Med. 2009;35(5):816–25.PubMedCrossRefGoogle Scholar
  51. 51.
    Fessler HE, Derdak S, Ferguson ND, Hager DN, Kacmarek RM, Thompson BT, et al. A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med. 2007;35(7):1649–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Stawicki SP, Goyal M, Sarani B. High-frequency oscillatory ventilation (HFOV) and airway pressure release ventilation (APRV): a practical guide. J Intensive Care Med. 2009;24(4):215–29.PubMedCrossRefGoogle Scholar
  53. 53.
    Greer SE, McCunn M. High-frequency oscillatory ventilation. Curr Probl Surg. 2013;50(10):471–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Bollen CW, van Well GT, Sherry T, Beale RJ, Shah S, Findlay G, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9(4):R430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. New Engl J Med. 2013;368(9):795–805.PubMedCrossRefGoogle Scholar
  57. 57.
    Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Gu X, Wu G, Yao Y, Shi D, Song Y. In adult acute respiratory distress syndrome patients, is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation? A meta-analysis of randomized controlled trials. Crit Care. 2014;18:R111.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Malhotra A, Drazen JM. High-frequency oscillatory ventilation on shaky ground. N Engl J Med. 2013;368(9):863–5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Downs J, Stock M. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15(5):459.PubMedCrossRefGoogle Scholar
  61. 61.
    Andrews P, Habashi N. Airway pressure release ventilation. Curr Probl Surg. 2013;50(10):462–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Maung AA, Kaplan LJ. Airway pressure release ventilation in acute respiratory distress syndrome. Crit Care Clin. 2011;27(3):501–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013;41(4):1046–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Putensen C, Zech S, WRIGGE H, Zinserling J, Stuber F, VON SPIEGEL T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, et al. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care. 2005;9(6):R780.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Walkey AJ, Nair S, Papadopoulos S, Agarwal S, Reardon CC. Use of airway pressure release ventilation is associated with a reduced incidence of ventilator-associated pneumonia in patients with pulmonary contusion. J Trauma Acute Care Surg. 2011;70(3):E42–7.CrossRefGoogle Scholar
  67. 67.
    Hering R, Bolten JC, Kreyer S, Berg A, Wrigge H, Zinserling J, et al. Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow. Intensive Care Med. 2008;34(3):523–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Hering R, Viehofer A, Zinserling J, Wrigge H, Kreyer S, Berg A, et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99(5):1137–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Kreyer S, Putensen C, Berg A, Soehle M, Muders T, Wrigge H, et al. Effects of spontaneous breathing during airway pressure release ventilation on cerebral and spinal cord perfusion in experimental acute lung injury. J Neurosurg Anesthesiol. 2010;22(4):323–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Neumann P, Wrigge H, Zinserling J, Hinz J, Maripuu E, Andersson LG, et al. Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support*. Crit Care Med. 2005;33(5):1090–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Maung AA, Luckianow G, Kaplan LJ. Lessons learned from airway pressure release ventilation. J Trauma Acute Care Surg. 2012;72(3):624–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Rasanen J, Cane RD, Downs JB, Hurst JM, Jousela IT, Kirby RR, et al. Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med. 1991;19(10):1234–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69(3):501–10; discussion 11.PubMedCrossRefGoogle Scholar
  75. 75.
    Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O’Toole RV, et al. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013;75(4):635–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä V. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48(6):722–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Dart IV BW, Maxwell RA, Richart CM, Brooks DK, Ciraulo DL, Barker DE, et al. Preliminary experience with airway pressure release ventilation in a trauma/surgical intensive care unit. J Trauma Acute Care Surg. 2005;59(1):71–6.CrossRefGoogle Scholar
  78. 78.
    Navarrete-Navarro P, Rodriguez A, Reynolds N, West R, Habashi N, Rivera R, et al. Acute respiratory distress syndrome among trauma patients: trends in ICU mortality, risk factors, complications and resource utilization. Intensive Care Med. 2001;27(7):1133–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Roy S, Sadowitz B, Andrews P, Gatto LA, Marx W, Ge L, et al. Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury. The J Trauma Acute Care Surg. 2012;73(2):391–400.PubMedCrossRefGoogle Scholar
  80. 80.
    Roy S, Habashi N, Sadowitz B, Andrews P, Ge L, Wang G, et al. Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Shock. 2013;39(1):28–38.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Emr B, Gatto LA, Roy S, Satalin J, Ghosh A, Snyder K, et al. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 2013;148(11):1005–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Smith BJ, Lundblad LK, Kollisch-Singule M, Satalin J, Nieman G, Habashi N, et al. Predicting the response of the injured lung to the mechanical breath profile. J Appl Physiol. 2015;118(7):932–40.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Warr J, Thiboutot Z, Rose L, Mehta S, Burry LD. Current therapeutic uses, pharmacology, and clinical considerations of neuromuscular blocking agents for critically ill adults. Ann Pharmacother. 2011;45(9):1116–26.PubMedCrossRefGoogle Scholar
  84. 84.
    Hansen-Flaschen JH, Brazinsky S, Basile C, Lanken PN. Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure: a national survey. JAMA. 1991;266(20):2870–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Mehta S, Burry L, Fischer S, Martinez-Motta JC, Hallett D, Bowman D, et al. Canadian survey of the use of sedatives, analgesics, and neuromuscular blocking agents in critically ill patients*. Crit Care Med. 2006;34(2):374–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Gainnier M, Roch A, Forel JM, Thirion X, Arnal JM, Donati S, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Forel JM, Roch A, Marin V, Michelet P, Demory D, Blache JL, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–57.PubMedCrossRefGoogle Scholar
  88. 88.
    Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Neto AS, Pereira VG, Esposito DC, Damasceno MC, Schultz MJ. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2(1):33.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Alhazzani W, Alshahrani M, Jaeschke R, Forel JM, Papazian L, Sevransky J, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2013;17(2):R43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Raoof S, Goulet K, Esan A, Hess DR, Sessler CN. Severe hypoxemic respiratory failure: part 2 – nonventilatory strategies. Chest. 2010;137(6):1437–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Hraiech S, Dizier S, Papazian L. The use of paralytics in patients with acute respiratory distress syndrome. Clin Chest Med. 2014;35(4):753–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Slutsky AS. Neuromuscular blocking agents in ARDS. New Engl J Med. 2010;363(12):1176–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Papazian L, Hraiech S. Spontaneous breathing in acute respiratory distress syndrome: friend and foe?*. Crit Care Med. 2013;41(2):685.PubMedCrossRefGoogle Scholar
  95. 95.
    Groeneveld AB. Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vascul Pharmacol. 2002;39(4–5):247–56.PubMedCrossRefGoogle Scholar
  96. 96.
    Arif SK, Verheij J, Groeneveld JA, Raijmakers PG. Hypoproteinemia as a marker of acute respiratory distress syndrome in critically ill patients with pulmonary edema. Intensive Care Med. 2002;28(3):310–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Wiedemann H, Wheeler A, Bernard G, Thompson B, Hayden D, DeBoisblanc B, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.PubMedCrossRefGoogle Scholar
  98. 98.
    Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Calfee CS, Matthay MA. Nonventilatory treatments for acute lung injury and ARDS*. Chest J. 2007;131(3):913–20.CrossRefGoogle Scholar
  101. 101.
    Schuster KM, Alouidor R, Barquist ES. Nonventilatory interventions in the acute respiratory distress syndrome. J Intensive Care Med. 2008;23(1):19–32.PubMedCrossRefGoogle Scholar
  102. 102.
    Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. New Engl J Med. 2006;354(16):1671–84.PubMedCrossRefGoogle Scholar
  103. 103.
    Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, et al. Methylprednisolone infusion in early severe ARDS results of a randomized controlled trial. Chest J. 2007;131(4):954–63.CrossRefGoogle Scholar
  104. 104.
    Tang BM, Craig JC, Eslick GD, Seppelt I, McLean AS. Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2009;37(5):1594–603.PubMedCrossRefGoogle Scholar
  105. 105.
    Peter JV, John P, Graham PL, Moran JL, George IA, Bersten A. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336(7651):1006–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36(6):1937–49.PubMedCrossRefGoogle Scholar
  107. 107.
    Marik PE, Meduri GU, Rocco PR, Annane D. Glucocorticoid treatment in acute lung injury and acute respiratory distress syndrome. Crit Care Clin. 2011;27(3):589–607.PubMedCrossRefGoogle Scholar
  108. 108.
    Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Crit Care Med. 1998;26(1):15–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis Jr K, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Walmrath D, Schneider T, Schermuly R, Olschewski H, Grimminger F, Seeger W. Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;153(3):991–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. Intensive Care Med. 1999;25(9):911–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Troncy E, Collet J-P, Shapiro S, Guimond J-G, Blair L, Ducruet T, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med. 1998;157(5):1483–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Griffiths MJD, Evans TW. Inhaled nitric oxide therapy in adults. New Engl J Med. 2005;353(25):2683–95.PubMedCrossRefGoogle Scholar
  114. 114.
    Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334:779.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Adhikari NK, Dellinger RP, Lundin S, Payen D, Vallet B, Gerlach H, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis*. Crit Care Med. 2014;42(2):404–12.PubMedCrossRefGoogle Scholar
  116. 116.
    Lowson SM. Inhaled alternatives to nitric oxide. Crit Care Med. 2005;33(Supplement):S188–95.PubMedCrossRefGoogle Scholar
  117. 117.
    Guerin C, Badet M, Rosselli S, Heyer L, Sab J-M, Langevin B, et al. Effects of prone position on alveolar recruitment and oxygenation in acute lung injury. Intensive Care Med. 1999;25(11):1222–30.PubMedCrossRefGoogle Scholar
  118. 118.
    Albert RK, Hubmayr RD. The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med. 2000;161(5):1660–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. New Engl J Med. 2001;345(8):568–73.PubMedCrossRefGoogle Scholar
  120. 120.
    Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292(19):2379–87.PubMedCrossRefGoogle Scholar
  121. 121.
    Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–84.PubMedCrossRefGoogle Scholar
  122. 122.
    Fridrich P, Krafft P, Hochleuthner H, Mauritz W. The effects of long-term prone positioning in patients with trauma-induced adult respiratory distress syndrome. Anesth Analg. 1996;83(6):1206–11.PubMedCrossRefGoogle Scholar
  123. 123.
    Gattinoni L, Carlesso E, Taccone P, Polli F, Guerin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76(6):448–54.PubMedGoogle Scholar
  124. 124.
    Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36(4):585–99.PubMedCrossRefGoogle Scholar
  125. 125.
    Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. New Engl J Med. 2013;368(23):2159–68.PubMedCrossRefGoogle Scholar
  126. 126.
    Gattinoni L, Pesenti A, Bombino M, Pelosi P, Brazzi L. Role of extracorporeal circulation in adult respiratory distress syndrome management. New Horiz. 1993;1(4):603–12.PubMedGoogle Scholar
  127. 127.
    Allen S, Holena D, McCunn M, Kohl B, Sarani B. A review of the fundamental principles and evidence base in the use of extracorporeal membrane oxygenation (ECMO) in critically ill adult patients. J Intensive Care Med. 2011;26(1):13–26.PubMedCrossRefGoogle Scholar
  128. 128.
    Gattinoni L, Carlesso E, Langer T. Clinical review: extracorporeal membrane oxygenation. Crit Care. 2011;15(6):243.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hemmila MR, Rowe SA, Boules TN, Miskulin J, McGillicuddy JW, Schuerer DJ, et al. Extracorporeal life support for severe acute respiratory distress syndrome in adults. Ann Surg. 2004;240(4):595.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kolla S, Awad SS, Rich PB, Schreiner RJ, Hirschl RB, Bartlett RH. Extracorporeal life support for 100 adult patients with severe respiratory failure. Ann Surg. 1997;226(4):544–64; discussion 65–6.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Peek GJ, Moore HM, Moore N, Sosnowski AW, Firmin RK. Extracorporeal membrane oxygenation for adult respiratory failure. Chest J. 1997;112(3):759–64.CrossRefGoogle Scholar
  132. 132.
    Nehra D, Goldstein AM, Doody DP, Ryan DP, Chang Y, Masiakos PT. Extracorporeal membrane oxygenation for nonneonatal acute respiratory failure: the Massachusetts General Hospital experience from 1990 to 2008. Arch Surg. 2009;144(5):427–32.PubMedCrossRefGoogle Scholar
  133. 133.
    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet (Lond, Engl). 2009;374(9698):1351–63.CrossRefGoogle Scholar
  134. 134.
    Szerlip NJ, Bholat O, McCunn MM, Aarabi B, Scalea TM. Extracorporeal life support as a treatment for neurogenic pulmonary edema and cardiac failure secondary to intractable intracranial hypertension: a case report and review of the literature. J Trauma Acute Care Surg. 2009;67(3):E69–71.CrossRefGoogle Scholar
  135. 135.
    Michaels AJ, Schriener RJ, Kolla S, Awad SS, Rich PB, Reickert C, et al. Extracorporeal life support in pulmonary failure after trauma. J Trauma Acute Care Surg. 1999;46(4):638–45.CrossRefGoogle Scholar
  136. 136.
    Messing JA, Agnihothri RV, Van Dusen R, Najam F, Dunne JR, Honig JR, et al. Prolonged use of extracorporeal membrane oxygenation as a rescue modality following traumatic brain injury. ASAIO J. 2014;60(5):597–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Neff LP, Cannon JW, Stewart IJ, Batchinsky AI, Zonies DH, Pamplin JC, et al. Extracorporeal organ support following trauma: the dawn of a new era in combat casualty critical care. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S120–8; discussion S8–9.PubMedCrossRefGoogle Scholar
  138. 138.
    MacLaren G, Combes A, Bartlett RH. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med. 2012;38(2):210–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014;190(5):488–96.PubMedCrossRefGoogle Scholar
  140. 140.
    Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, et al. A multicentre observational study of intra‐operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;67(9):999–1008.PubMedCrossRefGoogle Scholar
  141. 141.
    Hess DR, Kondili D, Burns E, Bittner EA, Schmidt UH. A 5-year observational study of lung-protective ventilation in the operating room: a single-center experience. J Crit Care. 2013;28(4):533. e9–e15.PubMedCrossRefGoogle Scholar
  142. 142.
    Hall J, Tarala R, Hall J, Mander J. A multivariate analysis of the risk of pulmonary complications after laparotomy. Chest J. 1991;99(4):923–7.CrossRefGoogle Scholar
  143. 143.
    Jayr C, Matthay M, Goldstone J, Gold W, Wiener-Kronish J. Preoperative and intraoperative factors associated with prolonged mechanical ventilation. A study in patients following major abdominal vascular surgery. Chest J. 1993;103(4):1231–6.CrossRefGoogle Scholar
  144. 144.
    Mitchell C, Garrahy P, Peake P. Postoperative respiratory morbidity: identification and risk factors. Aust N Z J Surg. 1982;52(2):203–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126–33.PubMedCrossRefGoogle Scholar
  147. 147.
    Futier E, Constantin J-M, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. New Engl J Med. 2013;369(5):428–37.PubMedCrossRefGoogle Scholar
  148. 148.
    Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102(4):838–54.PubMedCrossRefGoogle Scholar
  149. 149.
    Brismar B, Hedenstierna G, Lundquist H, Strandberg Å, Svensson L, Tokics L. Pulmonary densities during anesthesia with muscular relaxation – a proposal of atelectasis. Anesthesiology. 1985;62(4):422–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Pagel PS, Fu JL, Damask MC, Davis RF, Samuelson PN, Howie MB, et al. Desflurane and isoflurane produce similar alterations in systemic and pulmonary hemodynamics and arterial oxygenation in patients undergoing one-lung ventilation during thoracotomy. Anesth Analg. 1998;87(4):800–7.PubMedGoogle Scholar
  151. 151.
    Van Keer L, Van Aken H, Vandermeersch E, Vermaut G, Lerut T. Propofol does not inhibit hypoxic pulmonary vasoconstriction in humans. J Clin Anesth. 1989;1(4):284–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Michelet P, D’Journo X-B, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Lin W-Q, Lu X-Y, Cao L-H, Wen L-L, Bai X-H, Zhong Z-J. Effects of the lung protective ventilatory strategy on proinflammatory cytokine release during one-lung ventilation. Ai Zheng. 2008;27(8):870–3.PubMedGoogle Scholar
  154. 154.
    Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Weingarten T, Whalen F, Warner D, Gajic O, Schears G, Snyder M, et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2009;104:16–22. aep319.CrossRefGoogle Scholar
  156. 156.
    Yang M, Ahn HJ, Kim K, Kim JA, Chin AY, Kim MJ, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest J. 2011;139(3):530–7.CrossRefGoogle Scholar
  157. 157.
    Imberger G, McIlroy D, Pace NL, Wetterslev J, Brok J, Moller AM. Positive end-expiratory pressure (PEEP) during anaesthesia for the prevention of mortality and postoperative pulmonary complications. Cochrane Database Syst Rev. 2010;(9):CD007922.Google Scholar
  158. 158.
    Hemmes SN, de Abreu MG, Pelosi P, Schultz MJ, Severgnini P, Hollmann MW, et al. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384(9942):495–503.PubMedCrossRefGoogle Scholar
  159. 159.
    Serpa NA, Hemmes S, Barbas C, Beiderlinden M, Biehl M, Binnekade J, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123(1):66–78.CrossRefGoogle Scholar
  160. 160.
    Shander A, Fleisher LA, Barie PS, Bigatello LM, Sladen RN, Watson CB. Clinical and economic burden of postoperative pulmonary complications: patient safety summit on definition, risk-reducing interventions, and preventive strategies. Crit Care Med. 2011;39(9):2163–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  1. 1.Managing Director, Institute for Trauma Research and Injury PreventionPrincetonUSA
  2. 2.Family Medicine and Surgical Critical Care, R Adams Cowley Shock Trauma CenterUniversity of Maryland Medical CenterBaltimoreUSA
  3. 3.R Adams Cowley Shock Trauma CenterUniversity of Maryland Medical CenterBaltimoreUSA
  4. 4.Department of Medicine, R Adams Cowley Shock Trauma CenterBaltimoreUSA
  5. 5.Anesthesiology and Critical Care, R Adams Cowley Shock Trauma CenterUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations