Cooperative Device Cloud: A Resource Management Framework for the Internet of Things

Part of the Computer Communications and Networks book series (CCN)


Implementing Internet of Things (IoT) applications is tightly coupled to challenges like sensor integration, sensor management, semantics, heterogeneity, or abstraction. Irrespective of the challenges, a proliferation of IoT-related applications and solutions can be observed. This leads to an ever-expanding amount of sensors and devices deployed in our environment. As a result, the resources made available by the sensors and devices are increasing as well. Thus, apart from the aforementioned challenges, a resource management challenge arises. Similar to other domains, the available resources have to be managed and provisioned in an efficient manner in order to maximize the benefit the users can gain. Related concepts like on-demand provisioning, elasticity, or resource pooling have already been discussed and investigated with regard to the cloud computing domain. Accordingly, this chapter presents the device cloud concept, which aims at applying related cloud computing resource management concepts to the IoT domain. Sensors and devices are organized in resource pools and are dynamically provisioned to users that can benefit from them. The device cloud cuts static bindings between devices and users. Like the pay-as-you-go paradigm known from cloud computing, it allows accessing any kind of physical IoT resource on demand. Thus, the device cloud turns the users’ perception of the cloud. An endless remote resource provided by computing centers becomes an endless resource surrounding them.


Internet of things Device cloud Cloud computing Resource management Resource pooling Management framework Resource sharing E-health 


  1. 1.
    Weiser M (1999) The computer for the 21st century. SIGMOBILE Mob Comput Commun 3(3):3–11. doi: 10.1145/329124.329126 CrossRefGoogle Scholar
  2. 2.
    Ashton K (2009) That “internet of things” thing. RFiD J 22(7):97–114Google Scholar
  3. 3.
    Libelium Comunicaciones Distribuidas SL (2014) Top 50 internet of things applications – 50 sensor applications for a smarter world. Accessed 21 Nov 2014
  4. 4.
    Wang YW, Yu HL, Li Y (2011) Notice of retraction internet of things technology applied in medical information. In: Proceedings of Consumer Electronics, Communications and Networks (CECNet), pp 430–433. doi: 10.1109/CECNET.2011.5768647
  5. 5.
    Yuqiang C, Jianlan G, Xuanzi Hu (2010) The research of internet of things’ supporting technologies which face the logistics industry. In: Proceedings of Computational Intelligence and Security (CIS), pp 659–663. doi: 10.1109/CIS.2010.148
  6. 6.
    Chong G, Zhihao L, Yifeng Y (2011) The research and implement of smart home system based on internet of things. In: Proceedings of Electronics, Communications and Control (ICECC), pp 2944–2947. doi: 10.1109/ICECC.2011.6066672
  7. 7.
    Uckelmann D, Harrison M, Michahelles F (2011) An architectural approach towards the future internet of things. In: Dieter Uckelmann D, Harrison M, Michahelles F (eds) Architecting the internet of things. Springer, Berlin. doi: 10.1007/978-3-642-19157-2_1 CrossRefGoogle Scholar
  8. 8.
    Armbrust M et al (2010) Above the clouds: a Berkeley view of cloud computing. Commun ACM 53(4):50–58CrossRefGoogle Scholar
  9. 9.
    Sacks D (2011) The sharing economy. Fast Company 155. Accessed 26 Nov 2014
  10. 10.
    Parkhill DF (1966) The challenge of the computer utility. Addison-Wesley Publishing Company, ReadingGoogle Scholar
  11. 11.
    Mell P, Grance T (2011) The NIST definition of cloud computing. Natl Inst Stand Technol 53(6):50Google Scholar
  12. 12.
    EC Amazon (2010) Amazon elastic compute cloud (Amazon EC2). Accessed 26 Dec 2014
  13. 13.
    Yuriyama M, Kushida T (2010) Sensor-cloud infrastructure – physical sensor management with virtualized sensors on cloud computing. In: Proceedings of Network-Based Information Systems (NBiS), pp 1–8. doi: 10.1109/NBiS.2010.32
  14. 14.
    Alamri A et al (2013) A survey on sensor-cloud: architecture, applications, and approaches. Int J Distrib Sensors Netw 2013:1–18. doi: 10.1155/2013/917923 CrossRefGoogle Scholar
  15. 15.
    Alam S, Chowdhury MMR, Noll J (2010) SenaaS: an event-driven sensor virtualization approach for internet of things cloud. In: Proceedings of Networked Embedded Systems for Enterprise Applications (NESEA), pp 1–6. doi: 10.1109/NESEA.2010.5678060
  16. 16.
    Aberer K, Hauswirth M, Salehi A (2006) A middleware for fast and flexible sensor network deployment. In: Proceedings of the 32nd international conference on very large data bases, pp 1199–1120Google Scholar
  17. 17.
    Jayasumana AP, Han Q, Illangasekare TH (2007) Virtual sensor networks – a resource efficient approach for concurrent applications. In: Proceedings of information technology ITNG‘07, pp 111–115. doi: 10.1109/ITNG.2007.206
  18. 18.
    Islam M et al (2012) A survey on virtualization of wireless sensor networks. Sensors 12(2):2175–2207CrossRefGoogle Scholar
  19. 19.
    Craciunas SS et al (2010) Information-acquisition-as-a-service for cyber-physical cloud computing. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, p 14Google Scholar
  20. 20.
    Kirsch C et al (2012) Cyber-physical cloud computing: the binding and migration problem. In: Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE), pp 1425–1428. doi: 10.1109/DATE.2012.6176587
  21. 21.
    Kindberg T, Fox A (2002) System software for ubiquitous computing. Pervasive Comput IEEE 1(1):70–81. doi: 10.1109/MPRV.2002.993146 CrossRefGoogle Scholar
  22. 22.
    Westarp F et al (2002) The standardization problem in networks – a general framework. In: Jakobs K (ed) Information technology standards and standardization: a global perspective. Idea Group Publishing, Hershey. doi: 10.4018/978-1-878289-70-4.ch011 Google Scholar
  23. 23.
    Buxmann P et al (1999) The standardization problem – an economic analysis of standards in information systems. In: Proceedings of the 1st IEEE conference on Standardization and Innovation in Information Technology SIIT, pp 157–162Google Scholar
  24. 24.
    M2M Alliance e.V (2007) Machine-to-machine (M2M) – whitepaper. Accessed 26 Dec 2014
  25. 25.
    Pierce BC (2002) Types and programming languages. MIT Press, CambridgeGoogle Scholar
  26. 26.
    Ohlenburg J, Broll W, Lindt I (2007) DEVAL – a device abstraction layer for VR/AR. In: Stephanidis C (ed) Universal access in human computer interaction. Coping with diversity. Springer, Berlin. doi: 10.1007/978-3-540-73279-2_56 Google Scholar
  27. 27.
    Vaughan RT, Gerkey BP, Howard A (2003) On device abstractions for portable, reusable robot code. In: Proceedings of Intelligent Robots and Systems 2003 (IROS 2003), pp 2421–2427. doi: 10.1109/IROS.2003.1249233
  28. 28.
    Heineman GT, Councill WT (2001) Component-based software engineering: putting the pieces together. Addison-Wesley Longman Publishing Co, BostonGoogle Scholar
  29. 29.
    OSGi Alliance (2012) OSGi Core Release 5. Tech. rep. Accessed 9 Jan 2015
  30. 30.
    OSGi Alliance (2013) OSGi Compendium Release 5. Technical report. Accessed 9 Jan 2015
  31. 31.
    Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805. CrossRefMATHGoogle Scholar
  32. 32.
    Eisenhauer M, Rosengren P, Antolin P (2010) HYDRA: a development platform for integrating wireless devices and sensors into ambient intelligence systems. In: Guisto D et al (eds) The internet of things. Springer, New York. doi: 10.1007/978-1-4419-1674-7_36 Google Scholar
  33. 33.
    Kostelnik P, Sarnovsk M, Furdik K (2011) The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Comput Pract Exp 12(3):307–316Google Scholar
  34. 34.
    Dunkels A, Gronvall B, Voigt T (2004) Contiki – a lightweight and flexible operating system for tiny networked sensors. Proc Local Comp Netw 2004:455–462. doi: 10.1109/LCN.2004.38 Google Scholar
  35. 35.
    Prasad NR et al (2010) Open source middleware for networked embedded systems towards future internet of things. In: Sundmaker H et al (eds) Vision and challenges for realising the internet of things, CERP-IoT cluster. European Commission, LuxembourgGoogle Scholar
  36. 36.
    Sundmaeker H et al (2010) Vision and challenges for realising the internet of things, CERP-IoT cluster. European Commision, Luxembourg. doi: 10.2759/26127
  37. 37.
    Bassi A et al (2013) Enabling things to talk. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  38. 38.
    Zorzi M et al (2010) From today’s INTRAnet of things to a future INTERnet of things: a wireless- and mobility-related view. Wirel Commun IEEE 17(6):44–51. doi: 10.1109/MWC.2010.5675777 CrossRefGoogle Scholar
  39. 39.
    Darianian M, Michael MP (2008) Smart home mobile RFID-based internet-of-things systems and services. In: Proceedings of Advanced Computer Theory and Engineering, 2008. ICACTE’08, pp 116–120. doi: 10.1109/ICACTE.2008.180
  40. 40.
    Jin J et al (2014) An information framework for creating a smart city through internet of things. Internet Things J IEEE 1(2):112–121. doi: 10.1109/JIOT.2013.2296516 CrossRefGoogle Scholar
  41. 41.
    Karnouskos S (2010) The cooperative internet of things enabled smart grid. In: Proceedings of the 14th IEEE international symposium on consumer electronics (ISCE2010), pp 7–10Google Scholar
  42. 42.
    Jara AJ, Zamora MA, Skarmeta AFG (2010) An architecture based on internet of things to support mobility and security in medical environments. In: Proceedings of Consumer Communications and Networking Conference (CCNC), pp 1–5. doi: 10.1109/CCNC.2010.5421661
  43. 43.
    Li M, Li H (2011) Research on RFID integration middleware for enterprise information system. J Softw 6(2):167–174Google Scholar
  44. 44.
    Li X et al (2011) Smart community: an internet of things application. Commun Mag IEEE 49(11):68–75. doi: 10.1109/MCOM.2011.6069711 CrossRefGoogle Scholar
  45. 45.
    Celesti A et al (2010) How to enhance cloud architectures to enable cross-federation. Proc Cloud Comput (CLOUD) 2010:337–345. doi: 10.1109/CLOUD.2010.46 Google Scholar
  46. 46.
    Tanenbaum A, Steen MV (2006) Distributed systems. Pearson Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  47. 47.
    Hardt D (2012) RFC 6749–The OAuth 2.0 authorization framework. Technical reposrt. The Internet Engineering Task Force (IETF). Accessed 9 Jan 2015
  48. 48.
    Gilbert P et al (2011) YouProve: authenticity and fidelity in mobile sensing. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. SenSys ‘11, pp 176–189. doi: 10.1145/2070942.2070961
  49. 49.
    IEEE (2010) ISO/IEC/IEEE health informatics–personal health device communication–Part 20601: application profile–optimized exchange protocol. ISO/IEEE 11073–20601 2010(E):208. doi: 10.1109/IEEESTD.2010.5703195

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Complex and Distributed IT Systems, Faculty of Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations