Advertisement

Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach

  • Alexandros Nikas
  • Haris Doukas
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 241)

Abstract

Climate change has been considered one of the most significant risks for sustainability in our century; in order to move towards low-carbon and climate resilient economies, fundamental changes must take place. In this direction, the European Union has set ambitious goals regarding the transition of its Member States to low carbon societies, but the policy strategies to promote this transition must be socially acceptable and supported. So far, climate policies have been evaluated using quantitative methods, including general equilibrium and integrated assessment models but, despite their undoubted contribution to climate modeling, both the quantitative frameworks used for studying climate change and its impacts and those aiming at policy optimization or evaluation feature significant uncertainties and limitations. In order to overcome these issues, a Fuzzy Cognitive Map based approach is proposed, aiming to directly involve stakeholders and assess human knowledge and expertise. The suggested methodological framework can significantly support climate policy making, by supplementing quantitative models and exploring impacts of selected sets of policies, based on qualitative information deriving from a structured stakeholder engagement process. Finally, an innovative approach of incorporating the concept of time into the methodology is proposed and evaluated, in the aim of enhancing the robustness of transition pathways.

Keywords

Climate Policy Threshold Function Stakeholder Engagement Dynamic Stochastic General Equilibrium Hyperbolic Tangent Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The most important part of this research is based on the H2020 European Commission Project “Transitions pathways and risk analysis for climate change mitigation and adaptation strategies—TRANSrisk” under grant agreement No. 642260. The sole responsibility for the content of this chapter lies with the authors. It does not necessarily reflect the opinion of the European Commission.

References

  1. 1.
    AdaptCost: Briefing paper 1: Integrated Assessment Models – Africa Results. Stockholm Environment Institute (2010)Google Scholar
  2. 2.
    Amer, M., Jetter, A., Daim, T.: Development of fuzzy cognitive map (FCM)-based scenarios for wind energy. Int. J. Energy Sect. Manage. 5 (4), 564–584 (2011)CrossRefGoogle Scholar
  3. 3.
    Axelrod, R.: The analysis of cognitive maps. In: Axelrod, R. (ed.) Structure of Decision: The Cognitive Maps of Political Elites, pp. 55–73. Princeton University Press, Princeton (1976)Google Scholar
  4. 4.
    Barker, T.: Achieving a 10 % cut in Europe’s carbon dioxide emissions using additional excise duties: coordinated, uncoordinated and unilateral action using the econometric model E3ME. Econ. Syst. Res. 11 (4), 401–422 (1999)CrossRefGoogle Scholar
  5. 5.
    Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., Rickne, A.: Analyzing the functional dynamics of technological innovation systems: a scheme of analysis. Res. Policy 37 (3), 407–429 (2008)CrossRefGoogle Scholar
  6. 6.
    Biloslavo, R., Dolinšek, S.: Scenario planning for climate strategies development by integrating group Delphi, AHP and dynamic fuzzy cognitive maps. Foresight 12 (2), 38–48 (2010)Google Scholar
  7. 7.
    Biloslavo, R., Grebenc, A.: Integrating group Delphi, analytic hierarchy process and dynamic fuzzy cognitive maps for a climate warning scenario. Kybernetes 41 (3/4), 414–428 (2012)CrossRefGoogle Scholar
  8. 8.
    Bontis, N., Fitz-Enz, J.: Intellectual capital ROI: a causal map of human capital antecedents and consequents. J. Intellect. Cap. 3 (3), 223–247 (2002)CrossRefGoogle Scholar
  9. 9.
    Bougon, M., Weick, K., Binkhorst, D.: Cognition in organizations: an analysis of the Utrecht jazz orchestra. Adm. Sci. Q. 22 (4), 606–639 (1977)CrossRefGoogle Scholar
  10. 10.
    Bourgani, E., Stylios, C.D., Manis, G., Georgopoulos, V.C.: Integrated approach for developing timed fuzzy cognitive maps. In: Intelligent Systems’ 2014, pp. 193–204. Springer, Berlin (2015)Google Scholar
  11. 11.
    Brown, S.R.: Political Subjectivity: Applications of Q Methodology in Political Science. Yale University Press, New Haven, Connecticut (1980)Google Scholar
  12. 12.
    Brown, S.M.: Cognitive mapping and repertory grids for qualitative survey research: some comparative observations. J. Manag. Stud. 29 (3), 287–307 (1992)CrossRefGoogle Scholar
  13. 13.
    Bukowski, M., Kowal, P.: Large Scale, Multi-Sector DSGE Model as a Climate Policy Assessment Tool. Instytut Badań Strukturalnych, Warszawa (2010)Google Scholar
  14. 14.
    Bukowski, M., Kowal, P.: Modelling the transition to a low carbon economy with a large scale dsge model of Poland. Technical Report, IBS Technical Paper, Institute for Structural Research, Warsaw (2010)Google Scholar
  15. 15.
    Carvalho, J.P., Tomè, J.A.: Rule based fuzzy cognitive maps-expressing time in qualitative system dynamics. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 280–283. IEEE (2001)Google Scholar
  16. 16.
    Commission, E.: A roadmap for moving to a competitive low carbon economy in 2050 (2011). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, and the Committee of Regions, Document COM (2011): 112, http://eur-lex.europa.eu/legal--content/EN/TXT/PDF/?uri=CELEX:52011DC0112&from=en
  17. 17.
    Council, E.: European Council, 4 February 2011, Conclusions (2011). http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%202%202011%20REV%201
  18. 18.
    Dalkey, N., Helmer, O.: An experimental application of the Delphi method to the use of experts. Manag. Sci. 9 (3), 458–467 (1963)CrossRefGoogle Scholar
  19. 19.
    Dickerson, J., Kosko, B., et al.: Virtual worlds as fuzzy cognitive maps. In: IEEE Virtual Reality Annual International Symposium, pp. 471–477. IEEE (1993)Google Scholar
  20. 20.
    Eden, C., Ackermann, F.: Strategy Making: The Journey of Strategic Management. Sage, London (1998)Google Scholar
  21. 21.
    Eden, C., Ackermann, F., Cropper, S.: The analysis of cause maps. J. Manag. Stud. 29 (3), 309–324 (1992)CrossRefGoogle Scholar
  22. 22.
    Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al.: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 511–597 (2014)Google Scholar
  23. 23.
    Edmonds, J., Wise, M., MacCracken, C.: Advanced energy technologies and climate change: an analysis using the global change assessment model (GCAM). Fondazione ENI Enrico Mattei (1994)Google Scholar
  24. 24.
    Fuss, S., Szolgayova, J., Obersteiner, M., Gusti, M.: Investment under market and climate policy uncertainty. Appl. Energy 85 (8), 708–721 (2008)CrossRefGoogle Scholar
  25. 25.
    Groumpos, P.P.: Fuzzy cognitive maps: basic theories and their application to complex systems. In: Glykas, M. (ed.) Fuzzy Cognitive Maps, pp. 1–22. Springer, Berlin/ Heidelberg (2010)Google Scholar
  26. 26.
    Hagiwara, M.: Extended fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems, pp. 795–801. IEEE (1992)Google Scholar
  27. 27.
    Harary, F., Norman, R., Cartwright, D.: Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New York (1965)Google Scholar
  28. 28.
    Hare, W.: A Safe Landing for the Climate. State of the World, pp. 13–29. Worldwatch Institute, New York (2009)Google Scholar
  29. 29.
    Heaps, C.: Long-Range Energy Alternatives Planning (leap) System [software version 2011.0043]. Stockholm Environment Institute, Somerville (2012)Google Scholar
  30. 30.
    Hobbs, B.F., Ludsin, S.A., Knight, R.L., Ryan, P.A., Biberhofer, J., Ciborowski, J.J.: Fuzzy cognitive mapping as a tool to define management objectives for complex ecosystems. Ecol. Appl. 12 (5), 1548–1565 (2002)CrossRefGoogle Scholar
  31. 31.
    Huff, A.S.: Mapping Strategic Thought. Wiley, New York (1990)Google Scholar
  32. 32.
    Isak, K., Wildenberg, M., Adamescu, M., Skov, F., De Blust, G., Varjopuro, R.: Manual for applying fuzzy cognitive mapping–experiences from ALTER-Net. Alter-Net final report (2009)Google Scholar
  33. 33.
    Jetter, A.J.: Fuzzy cognitive maps for engineering and technology management: what works in practice? In: Technology Management for the Global Future. PICMET 2006, vol. 2, pp. 498–512. IEEE (2006)Google Scholar
  34. 34.
    Kabashi, S., Bekteshi, S., Ahmetaj, S., Kabashi, G., Najdovski, D., Zidanšek, A., Šlaus, I.: Effects of kosovo’s energy use scenarios and associated gas emissions on its climate change and sustainable development. Appl. Energy 88 (2), 473–478 (2011)CrossRefGoogle Scholar
  35. 35.
    Kandasamy, W., Smarandache, F.: Fuzzy Cognitive Maps and Neutrosophic Cognitive Map. Infinite Study, Phoenix (2004)Google Scholar
  36. 36.
    Kardaras, D., Karakostas, B.: The use of fuzzy cognitive maps to simulate the information systems strategic planning process. Inf. Softw. Technol. 41 (4), 197–210 (1999)CrossRefGoogle Scholar
  37. 37.
    Kelly, D.L., Kolstad, C.D.: Integrated assessment models for climate change control. In: Folmer, H., Tietenberg, T. (eds.) International Yearbook of Environmental and Resource Economics 1999/2000, pp. 171–197. Edward Elgar, Cheltenham (1999)Google Scholar
  38. 38.
    Kok, K.: The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil. Glob. Environ. Chang. 19 (1), 122–133 (2009)CrossRefGoogle Scholar
  39. 39.
    Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24 (1), 65–75 (1986)CrossRefGoogle Scholar
  40. 40.
    Kulmer, V., Koland, O., Steininger, K.W., Fürst, B., Käfer, A.: The interaction of spatial planning and transport policy: a regional perspective on sprawl. J. Transport Land Use 7 (1), 57–77 (2014)CrossRefGoogle Scholar
  41. 41.
    Laurenti, R., Lazarevic, D., Poulikidou, S., Montrucchio, V., Frostell, B., Bistagnino, L., Wennersten, R.: Using causal maps to identify potential sources of environmental impact outside the scope of LCA studies: preliminary findings from case studies on washing machines and road vehicles. In: 18th Annual International Sustainable Development Research Conference, 24–26 June 2012 (2012)Google Scholar
  42. 42.
    Lazarus, M., Heaps, C., Raskin, P.: Long range energy alternatives planning system (LEAP). Reference Manual. Boston Stockholm Environment Institute (SEI), Boston (1995)Google Scholar
  43. 43.
    Lee, K.C., Kim, J.S., Chung, N.H., Kwon, S.J.: Fuzzy cognitive map approach to web-mining inference amplification. Expert Syst. Appl. 22 (3), 197–211 (2002)CrossRefGoogle Scholar
  44. 44.
    Lee, K.C., Lee, H., Lee, N., Lim, J.: An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms. Ind. Mark. Manag. 42 (4), 552–563 (2013)CrossRefGoogle Scholar
  45. 45.
    Lopolito, A., Nardone, G., Prosperi, M., Sisto, R., Stasi, A.: Modeling the bio-refinery industry in rural areas: a participatory approach for policy options comparison. Ecol. Econ. 72, 18–27 (2011)CrossRefGoogle Scholar
  46. 46.
    Nordhaus, W.D.: The ‘dice’ model: background and structure of a dynamic integrated climate-economy model of the economics of global warming. Technical Report, Cowles Foundation for Research in Economics, Yale University (1992)Google Scholar
  47. 47.
    OECD: The Economic Consequences of Climate Change. OECD Publishing, Paris (2015)Google Scholar
  48. 48.
    Olazabal, M.: Sustainable urban development under climate change and resource scarcity. Ph.D. thesis, University of Cambridge (2015)Google Scholar
  49. 49.
    Ortiz, R.A., Golub, A., Lugovoy, O., Markandya, A., Wang, J.: The DICER model: methodological issues and initial results. Technical Report, Basque Centre for Climate Change/Klima Aldaketa Ikergai (2010)Google Scholar
  50. 50.
    Ozesmi, U.: Ecosystems in the mind: fuzzy cognitive maps of the kizilirmak delta wetlands in turkey. Ph.D. thesis, University of Minnesota (1999)Google Scholar
  51. 51.
    Özesmi, U., Özesmi, S.L.: Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecol. Model. 176 (1), 43–64 (2004)CrossRefGoogle Scholar
  52. 52.
    Papageorgiou, E., Kontogianni, A.: Using fuzzy cognitive mapping in environmental decision making and management: a methodological primer and an application. In: Young, S.S., Silvern, S.E. (eds.) International Perspectives on Global Environmental Change, pp. 427–450. INTECH, Rijeka (2012)Google Scholar
  53. 53.
    Papageorgiou, E., Spyridonos, P., Glotsos, D.T., Stylios, C., Ravazoula, P., Nikiforidis, G., Groumpos, P.: Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl. Soft Comput. 8 (1), 820–828 (2008). doi: 10.1016/j.asoc.2007.06.006.
  54. 54.
    Papageorgiou, E., Markinos, A., Gemtos, T.: Soft computing technique of fuzzy cognitive maps to connect yield defining parameters with yield in cotton crop production in central Greece as a basis for a decision support system for precision agriculture application. In: Glykas, M. (ed.) Fuzzy Cognitive Maps, pp. 325–362. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  55. 55.
    Papaioannou, M., Neocleous, C., Papageorgiou, C., Schizas, C.: A fuzzy cognitive map model of the repercussions of Greek PSI on Cypriot economy. In: 14th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), pp. 255–260. IEEE (2013)Google Scholar
  56. 56.
    Park, K.S., Kim, S.H.: Fuzzy cognitive maps considering time relationships. Int. J. Hum. Comput. Stud. 42 (2), 157–168 (1995). doi: 10.1006/ijhc.1995.1007.
  57. 57.
    Roberts, F.: The questionnaire method. In: Axelrod, R. (ed.) Structure of Decision: The Cognitive Maps of Political Elites, pp. 333–342. Princeton University Press, Princeton (1976)Google Scholar
  58. 58.
    Rode, J., Crassard, F.: The Evolution of Building Integrated Photovoltaics (BIPV) in the German and French Technological Innovation Systems for Solar Cells. Chalmers University of Technology, Gothenburg (2007)Google Scholar
  59. 59.
    Scasny, M., Pisa, V., Pollit, H., Chewpreecha, U.: Analyzing macroeconomic effects of environmental taxation in the Czech Republic with the econometric E3ME model. Czech J. Econ. Finance 59 (5), 460–491 (2009)Google Scholar
  60. 60.
    Schneider, M., Shnaider, E., Kandel, A., Chew, G.: Automatic construction of FCMs. Fuzzy Sets Syst. 93 (2), 161–172 (1998). doi: 10.1016/s0165-0114(96)00218-7.
  61. 61.
    Smith, J., Schellnhuber, H., Mirza, M.: Vulnerability to climate change and reasons for concern: a synthesis. In: McCarthy, J.J., White, K.S., Canziani, O., Leary, N., Dokken, D.J. (eds.) Climate Change 2001: Impacts: Adaptation and Vulnerability, pp. 913–967. Cambridge University Press, Cambridge (2001)Google Scholar
  62. 62.
    Stach, W., Kurgan, L., Pedrycz, W.: Expert-based and computational methods for developing fuzzy cognitive maps. In: Glykas, M. (ed.) Fuzzy Cognitive Maps, pp. 325–362. Springer, Berlin, Heidelberg (2010)Google Scholar
  63. 63.
    Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.: Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge/New York (2014)Google Scholar
  64. 64.
    Styblinski, M., Meyer, B.: Signal flow graphs vs fuzzy cognitive maps in application to qualitative circuit analysis. Int. J. Man Mach. Stud. 35 (2), 175–186 (1991)CrossRefGoogle Scholar
  65. 65.
    Stylios, C.D., Groumpos, P.P.: Modeling complex systems using fuzzy cognitive maps. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 34 (1), 155–162 (2004)CrossRefGoogle Scholar
  66. 66.
    Thomas, S.: The Analytic Hierarchy Process - Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York (1980)Google Scholar
  67. 67.
    UNFCCC: Report of the Conference of the Parties on Its Sixteenth Session, Held in Cancun from 29 November to 10 December 2010. FCCC/CP/2010/7/Add. 1, 15 March 2011, http://unfccc.int/files/na/application/pdf/07a01--1.pdf
  68. 68.
    UNFCCC: Adoption of the Paris Agreement, Proposal by the President, Draft Decision –/cp.21. Conference of the Parties, 21st Session (2015). http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
  69. 69.
    van Vliet, M., Kok, K., Veldkamp, T.: Linking stakeholders and modellers in scenario studies: the use of fuzzy cognitive maps as a communication and learning tool. Futures 42 (1), 1–14 (2010)CrossRefGoogle Scholar
  70. 70.
    Van Vuuren, D.P., Den Elzen, M.G., Lucas, P.L., Eickhout, B., Strengers, B.J., van Ruijven, B., Wonink, S., van Houdt, R.: Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim. Chang. 81 (2), 119–159 (2007)CrossRefGoogle Scholar
  71. 71.
    Vidican, G., Samulewicz, D., McElvaney, L.: Challenges to developing technological innovation systems energy in Abu Dhabi. In: The 8th Triple Helix Conference, Madrid (2011)Google Scholar
  72. 72.
    Wang, K., Wang, C., Chen, J.: Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change. Energy Policy 37 (8), 2930–2940 (2009)CrossRefGoogle Scholar
  73. 73.
    Watkiss, P., Downing, T., Dyszynski, J.: AdaptCost Project: Analysis of the Economic Costs of Climate Change Adaptation in Africa. UNEP, Nairobi (2010)Google Scholar
  74. 74.
    Wei, Z., Lu, L., Yanchun, Z.: Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Syst. Appl. 35 (4), 1583–1592 (2008)CrossRefGoogle Scholar
  75. 75.
    Weyant, J., Davidson, O., Dowlabathi, H., Edmonds, J., Grubb, M., Parson, E., Cline, W.: Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce, J., Lee, H., Haites, E. (eds.) Climate Change 1995: Economic and Social Dimensions of Climate, pp. 367–396. Cambridge University Press, Cambridge (1996)Google Scholar
  76. 76.
    Wiseman, J., Edwards, T., Luckins, K.: Post carbon pathways: A meta-analysis of 18 large-scale post carbon economy transition strategies. Environ. Innov. Soc. Transit. 8, 76–93 (2013)CrossRefGoogle Scholar
  77. 77.
    Wrightson, M.: The documentary coding method. In: Axelrod, R. (ed.) Structure of Decision: The Cognitive Maps of Political Elites, pp. 291–332. Princeton University Press, Princeton (1976)Google Scholar
  78. 78.
    Xirogiannis, G., Glykas, M.: Fuzzy cognitive maps in business analysis and performance-driven change. IEEE Trans. Eng. Manag. 51 (3), 334–351 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations