Advertisement

A Multiobjective Optimization Framework for the Embodiment Design of Mechatronic Products Based on Morphological and Design Structure Matrices

  • Didier CasnerEmail author
  • Rémy Houssin
  • Jean Renaud
  • Dominique Knittel
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 467)

Abstract

This paper deals with the embodiment design of mechatronic product and is intended for proposing a novel design support framework based on multiobjective optimization approaches. This framework builds design architectures by aggregating solution principles presented within a morphological matrix. Then, the solution principles are analyzed against compatibility. This compatibility analysis results in a design structure matrix. Once this compatibility analysis has been performed, the optimization framework developed in this paper is applied to find combination of solution principles. We showed the application of our framework for the embodiment design of a wind turbine.

Keywords

Design process Mechatronic product Multiobjective optimization Design structure matrix Embodiment design 

References

  1. 1.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design: A Systematic Approach, 3rd edn. Springer, London (2007)CrossRefGoogle Scholar
  2. 2.
    Tan, S.: Enhanced Functional Analysis System Technique for Managing Complex Engineering Projects, University of Missouri–Rolla (2007)Google Scholar
  3. 3.
    Yoshida, K.: Functional Analysis. Springer, New York (1980)CrossRefGoogle Scholar
  4. 4.
    Cavallucci, D., Eltzer, T.: Structuring knowledge in inventive design of complex problems. Procedia Eng. 9, 694–701 (2011). BergamoCrossRefGoogle Scholar
  5. 5.
    Ahmad, A., Andersson, K., Sellgren, U.: A model-based and simulation-driven methodology for design of haptic devices. Mechatron. 24, 805–818 (2014)CrossRefGoogle Scholar
  6. 6.
    Yan, W., Zanni-Merk, C., Cavallucci, D., Collet, P.: An ontology-based approach for inventive problem solving. Eng. Appl. Artif. Intell. 27, 175–190 (2014)CrossRefGoogle Scholar
  7. 7.
    Cardillo, A., Cascini, G., Frillici, F., Rotini, F.: Computer-aided embodiment design through the hybridization of mono objective optimizations for efficient innovation process. Comput. Ind. 62, 384–397 (2011)CrossRefGoogle Scholar
  8. 8.
    Scaravetti, D., Pailhes, J., Nadeau, J.-P., Sebastian, P.: Aided decision-making for an embodiment design problem. In: Bramley, A., Brissaud, D., Coutellier, D., McMahon, C. (eds.) Advances in Integrated Design and Manufacturing in Mechanical Engineering, pp. 159–172. Springer, The Netherlands (2005)CrossRefGoogle Scholar
  9. 9.
    Kuhm, D., Knittel, D.: New design of robust industrial accumulators for elastic webs, Milano, pp. 8645-8650 (2011)Google Scholar
  10. 10.
    Scheidl, R., Winkler, B.: Model relations between conceptual and detail design. Mechatron. 20, 842–849 (2010)CrossRefGoogle Scholar
  11. 11.
    Casner, D., Houssin, R., Renaud, J., Knittel, D.: Contribution to the embodiment design of mechatronic system by evolutionary optimization approaches. In: Joint Conference on Mechanical, Design Engineering & Advanced Manufacturing, Toulouse, France (2014)Google Scholar
  12. 12.
    Casner, D., Houssin, R., Renaud, J., Knittel, D.: Optimization as an innovative design approach to improve the performances and the functionalities of mechatronic devices. In: Triz Future Conference 2014 - Global Innovation Convention. Elsevier, Lausanne, Switzerland (2014)Google Scholar
  13. 13.
    Cross, N.: Engineering Design Methods: Strategies for Product Design. Wiley, Hoboken (2008)Google Scholar
  14. 14.
    Ficalora, J.P., Cohen, L.: Quality Function Deployment and Six Sigma, Second Edition: A QFD Handbook. Pearson Education, Upper Saddle River (2009)Google Scholar
  15. 15.
    Bossert, J.L.: Quality Function Deployment: The Practitioner’s Approach. Taylor & Francis, Boca Raton (1990)Google Scholar
  16. 16.
    Ölvander, J., Lundén, B., Gavel, H.: A computerized optimization framework for the morphological matrix applied to aircraft conceptual design. Comput.-Aided Des. 41, 187–196 (2009)CrossRefGoogle Scholar
  17. 17.
    Suh, N.P.: Axiomatic Design: Advances and Applications. Oxford University Press, Incorporated, News York (2001)Google Scholar
  18. 18.
    Suh, N.P.: Complexity: Theory And Applications. Oxford University Press on Demand, New York (2005)Google Scholar
  19. 19.
    Browning, T.R.: Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Trans. Eng. Manage. 48, 292–306 (2001)CrossRefGoogle Scholar
  20. 20.
    Zwicky, F.: Discovery, Invention, Research Through the Morphological Approach. Macmillan, New York (1969)Google Scholar
  21. 21.
    Zwicky, F.: C.I.o. Technology, The morphological method of analysis and construction, California inst. of technol. (1948)Google Scholar
  22. 22.
    Singh, A.: Creative Systems in Structural and Construction Engineering. Taylor & Francis, Rotterdam (2001)Google Scholar
  23. 23.
    Bytheway, C.W.: Function Analysis Systems Technique Creativity and Innovation. J. Ross Pub, Fort Lauderdale (2007)Google Scholar
  24. 24.
    Altshuller, G., Shulyak, L., Rodman, S.: 40 Principles Triz Keys to Innovation. Technical Innovation Center, Worcester (2002)Google Scholar
  25. 25.
    Deb, K.: Multi-objective Optimization Using Evolutionary Aslgorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  26. 26.
    Frechard, J., Knittel, D.: Drive requirements for elastic web roll-to-roll systems. Mech. Mach. Theory 66, 14–31 (2003)CrossRefGoogle Scholar
  27. 27.
    Collette, Y., Siarry, P.: Multiobjective optimization principles and case studies, Corr. 2 print edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Cavallucci, D.: Integrating Altshuller’s development laws for technical systems into the design process. CIRP Ann. - Manufact. Technol. 50, 115–120 (2001)CrossRefGoogle Scholar
  29. 29.
    Chinkatham, T., Cavallucci, D.: Early feasibility evaluation of solution concepts in an inventive design method framework: approach and support tool. Comput. Ind. 67, 1–16 (2015)CrossRefGoogle Scholar
  30. 30.
    Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimisation. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 3–37. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  32. 32.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, London (2006)zbMATHGoogle Scholar
  33. 33.
    Betz, A.: Introduction to the Theory of Flow Machines. Pergamon Press, New York (1966)Google Scholar
  34. 34.
    Manwell, J.F., McGowan, J.G., Rogers, A.L.: Wind Energy Explained: Theory, Design and Application. Wiley, Chichester (2010)Google Scholar
  35. 35.
    Høyland, A., Rausand, M.: System Reliability Theory: Models and Statistical Methods. Wiley, New York (2009)zbMATHGoogle Scholar
  36. 36.
    Houssin, R., Coulibaly, A.: An approach to solve contradiction problems for the safety integration in innovative design process. Comput. Ind. 62, 398–406 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Didier Casner
    • 1
    Email author
  • Rémy Houssin
    • 1
    • 2
  • Jean Renaud
    • 1
  • Dominique Knittel
    • 1
    • 2
  1. 1.LGECOINSA of StrasbourgStrasbourg CedexFrance
  2. 2.University of StrasbourgStrasbourgFrance

Personalised recommendations