Exploring the Microbiology of the Deep Sea

  • Mohamed JebbarEmail author
  • Pauline Vannier
  • Grégoire Michoud
  • Viggó Thór Marteinsson


In this chapter the current knowledge of the diversity of piezophiles isolated so far is reviewed. The isolated piezophiles originated from high-pressure environments such as the cold deep sea, hydrothermal vents, and crustal rocks. Several “stress” conditions can be experienced in these environments, in particular high hydrostatic pressure (HHP). Discoveries of abundant life in diverse high-pressure environments (deep biosphere) support the existence and an adaptation of life to HHP. At least 50 piezophilic and piezotolerant Bacteria and Archaea have been isolated from different deep-sea environments but these do not by far cover the large metabolic diversity of known microorganisms thriving in deep biospheres. The field of biology of piezophiles has suffered essentially from the requirements for high-pressure retaining sample containments and culturing laboratory equipment, which is technically complicated and expensive. Only a few prototypes of HHP bioreactors have been developed by a number of research groups and this could explain the limited number of piezophiles isolated up till now.


High Hydrostatic Pressure Guaymas Basin Ryukyu Trench Lateral Flagellum Deep Biosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.


  1. Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alain K, Marteinsson VT, Miroshnichenko ML et al (2002) Marinitoga piezophila sp nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339PubMedGoogle Scholar
  3. Alazard D, Dukan S, Urios A et al (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178CrossRefPubMedGoogle Scholar
  4. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720PubMedPubMedCentralGoogle Scholar
  5. Amrani A, Bergon A, Holota H et al (2014) Transcriptomics reveal several gene expression patterns in the Piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure. PLoS ONE 9(9):e106831Google Scholar
  6. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim et Biophys Acta-Protein Struct Mol Enzymol 1595:367–381CrossRefGoogle Scholar
  7. Bartlett DH, Ferguson G, Valle G (2008) Adaptations of the psychrotolerant piezophile Photobacterium profundum strain SS9. High-Pressure Microbiol 319–337Google Scholar
  8. Bernhardt G, Jaenicke R, Lüdemann HD et al (1988) High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Env Microbiol 54:1258–1261Google Scholar
  9. Birrien JL, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831CrossRefPubMedGoogle Scholar
  10. Bonch-Osmolovskaya EA (2008) Thermotogales. In Encyclopedia of Life Sciences (ELS). Wiley, ChichesterGoogle Scholar
  11. Campanaro S, Vezzi A, Vitulo N et al (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genom 6:122CrossRefGoogle Scholar
  12. Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Evol Bacteriol 48(4):1181–1185Google Scholar
  13. Cao Y, Chastain RA, Eloe EA et al (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 80:54–60CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cario A, Lormières F, Xiang X, Oger P (2015) High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Res Microbiol 166:710–716CrossRefPubMedGoogle Scholar
  15. Certes A (1884) Sur la culture, a l’abri des germes atmospheriques, des eaux et des sediments rapportes par les expeditions du Travailleur et du Talisman; 1882–1883. Compt Rend Acad Sci 98:690–693Google Scholar
  16. Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112CrossRefPubMedGoogle Scholar
  17. Ciobanu M-C, Burgaud G, Dufresne A et al (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380CrossRefPubMedPubMedCentralGoogle Scholar
  18. Corliss JB, Ballard RD (1977) Oases of life in cold abyss. Nat Geogr 152:441–453Google Scholar
  19. DeLong EF (1997) Marine microbial diversity: the tip of the iceberg. Trends Biotechnol 15:203–207CrossRefPubMedGoogle Scholar
  20. DeLong EF, Yayanos AA (1985) Adaptation of the membrane-lipids of a deep-sea bacterium to changes in hydrostatic-pressure. Science 228:1101–1102CrossRefPubMedGoogle Scholar
  21. DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedPubMedCentralGoogle Scholar
  22. DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503CrossRefPubMedGoogle Scholar
  23. Deming JW, Somers LK, Straube WL et al (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen-nov. Syst Appl Microbiol 10:152–160CrossRefGoogle Scholar
  24. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469Google Scholar
  25. Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74:6298–6305CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eloe EA, Fadrosh DW, Novotny M et al (2011a) Going deeper: metagenome of a hadopelagic microbial community. PLoS ONE 6:e20388CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eloe EA, Malfatti F, Gutierrez J et al (2011b) Isolation and characterization of a psychropiezophilic alphaproteobacterium. Appl Environ Microbiol 77:8145–8153CrossRefPubMedPubMedCentralGoogle Scholar
  28. Euzeby J (2013) List of prokaryotic names with standing in nomenclature-Genus. Staphylococcus. Accessed April 2010
  29. González JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164CrossRefPubMedGoogle Scholar
  30. Hammond P (1995) Described and estimated species numbers: an objective assessment of current knowledge. Microb Divers Ecosyst Funct 29–71Google Scholar
  31. Huber H, Thomm M, Knig H et al (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50CrossRefGoogle Scholar
  32. Inagaki F, Hinrichs K-U, Kubo Y et al (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424CrossRefPubMedGoogle Scholar
  33. Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Ann Rev Microbiol 38:487–514CrossRefGoogle Scholar
  34. Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 1–20Google Scholar
  35. Jones WJ, Leigh JA, Mayer F et al (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  36. Kato C (2006) Handling of piezophilic microorganisms. Methods Microbiol 35:733–741CrossRefGoogle Scholar
  37. Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230CrossRefPubMedGoogle Scholar
  38. Kato C, Qureshi MH (1999) Pressure response in deep-sea piezophilic bacteria. J Mol Microbiol Biotechnol 1:87–92PubMedGoogle Scholar
  39. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9CrossRefGoogle Scholar
  40. Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12CrossRefPubMedGoogle Scholar
  41. Kato C, Li L, Nogi Y et al (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedPubMedCentralGoogle Scholar
  42. Khelaifia S, Fardeau ML, Pradel N et al (2011) Desulfovibrio piezophilus sp nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711CrossRefPubMedGoogle Scholar
  43. Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355. doi: 10.1128/AEM.00473-09 CrossRefPubMedPubMedCentralGoogle Scholar
  44. L’Haridon S, Jiang L, Alain K et al (2014) Kosmotoga pacifica sp. nov., a thermophilic chemoorganoheterotrophic bacterium isolated from an East Pacific hydrothermal sediment. Extremophiles 18:81–88CrossRefPubMedGoogle Scholar
  45. Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10:631–640CrossRefPubMedGoogle Scholar
  46. Lasken RS, McLean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25CrossRefPubMedGoogle Scholar
  48. Lauro FM, Chastain RA, Blankenship LE et al (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845CrossRefPubMedPubMedCentralGoogle Scholar
  49. León-Zayas R, Novotny M, Podell S et al (2015) Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 81:8265–8276PubMedPubMedCentralGoogle Scholar
  50. Lossouarn J, Nesbø CL, Mercier C et al (2015) “Ménage à trois”: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17:3278–3288CrossRefPubMedGoogle Scholar
  51. Marteinsson VT, Moulin P, Birrien J et al (1997) Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl Environ Microbiol 63:1230–1236PubMedPubMedCentralGoogle Scholar
  52. Marteinsson VT, Reysenbach AL, Birrien JL, Prieur D (1999a) A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277–282CrossRefPubMedGoogle Scholar
  53. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999b) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Bacteriol 49:351–359CrossRefGoogle Scholar
  54. Miller JF, Shah NN, Nelson CM et al (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042PubMedPubMedCentralGoogle Scholar
  55. Morita R (1976) Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. Soc Gen Microbiol Symp Ser 17:279–298Google Scholar
  56. Nesbø CL, Bradnan DM, Adebusuyi A et al (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393CrossRefPubMedGoogle Scholar
  57. Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:71–77CrossRefPubMedGoogle Scholar
  58. Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295CrossRefPubMedGoogle Scholar
  59. Nogi Y, Masui N, Kato C (1998b) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7CrossRefPubMedGoogle Scholar
  60. Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532PubMedGoogle Scholar
  61. Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631CrossRefPubMedGoogle Scholar
  62. Nogi Y, Hosoya S, Kato C, Horikoshi K (2007) Psychromonas hadalis sp nov., a novel plezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 57:1360–1364CrossRefPubMedGoogle Scholar
  63. Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809CrossRefPubMedGoogle Scholar
  64. Park CB, Clark DS (2002) Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl Environ Microbiol 68:1458–1463CrossRefPubMedPubMedCentralGoogle Scholar
  65. Park CB, Boonyaratanakornkit BB, Clark DS (2006) Toward the large scale cultivation of hyperthermophiles at high-temperature and high-pressure. Methods Microbiol 35:109–126CrossRefGoogle Scholar
  66. Parkes RJ, Sellek G, Webster G et al (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol 11:3140–3153CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pathom-Aree W, Stach JE, Ward AC et al (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189CrossRefPubMedGoogle Scholar
  68. Pradel N, Ji B, Gimenez G et al (2013) The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS ONE 8:e55130CrossRefPubMedPubMedCentralGoogle Scholar
  69. Prieur D (1997) Microbiology of deep-sea hydrothermal vents. Trends Biotechnol 15:242–244. doi: 10.1016/S0167-7799(97)01052-4 CrossRefGoogle Scholar
  70. Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. In Biotechnology of extremophiles. Springer, Heidelberg, pp 23–35Google Scholar
  71. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596CrossRefGoogle Scholar
  72. Qureshi MH, Kato C, Horikoshi K (1998) Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. FEMS Microbiol Lett 161:301–309CrossRefGoogle Scholar
  73. Roussel EG, Bonavita M-AC, Querellou J et al (2008) Extending the sub-sea-floor biosphere. Science 320:1046CrossRefPubMedGoogle Scholar
  74. Ruby E, Nealson K (1978) Seasonal changes in the species composition of luminous bacteria in nearshore seawater. Limnol Oceanogr 23:530–533CrossRefGoogle Scholar
  75. Simonato F, Campanaro S, Lauro FM et al (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25CrossRefPubMedGoogle Scholar
  76. Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedGoogle Scholar
  77. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4(1):9–17. PMID:10741832Google Scholar
  78. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500CrossRefPubMedGoogle Scholar
  79. Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122 ℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 31:10949–10954CrossRefGoogle Scholar
  80. Takai K, Miyazaki M, Hirayama H et al (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997CrossRefPubMedGoogle Scholar
  81. Tamegai H, Kato C, Horikoshi K (1998) Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS 12. J Biochem Mol Biol Biophys 1:213–220Google Scholar
  82. Tamegai H, Ota Y, Haga M et al (2011) Piezotolerance of the respiratory terminal oxidase activity of the piezophilic Shewanella violacea DSS12 as compared with non-piezophilic Shewanella species. Biosci Biotechnol Biochem 75:919–924CrossRefPubMedGoogle Scholar
  83. Thrash JC, Temperton B, Swan BK et al (2014) Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–1451CrossRefPubMedGoogle Scholar
  84. Toffin L, Bidault A, Pignet P et al (2004) Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949CrossRefPubMedGoogle Scholar
  85. Usui K, Hiraki T, Kawamoto J et al (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta-Biomembr 1818:574–583CrossRefGoogle Scholar
  86. Vannier P, Michoud G, Oger P et al (2015) Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions. Res Microbiol 166:717–725CrossRefPubMedGoogle Scholar
  87. Vezzi A, Campanaro S, D’Angelo M et al (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461CrossRefPubMedGoogle Scholar
  88. Wang F, Wang J, Jian H et al. (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3(4):e1937Google Scholar
  89. Welch TJ, Bartlett DH (1996) Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 178:5027–5031PubMedPubMedCentralGoogle Scholar
  90. Welch TJ, Bartlett DH (1998) Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol 27:977–985CrossRefPubMedGoogle Scholar
  91. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wirsen CO, Jannasch HW, Wakeham SG, Canuel EA (1987) Membranes lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 14:319–322CrossRefGoogle Scholar
  93. Xiao X, Wang P, Zeng X et al (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57:60–65CrossRefPubMedGoogle Scholar
  94. Xu Y, Nogi Y, Kato C et al (2003a) Psychromonas profunda sp nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532CrossRefPubMedGoogle Scholar
  95. Xu Y, Nogi Y, Kato C et al (2003b) Moritella profunda sp nov and Moritella abyssi sp nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538CrossRefPubMedGoogle Scholar
  96. Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yayanos A, DeLong EF (1987) Deep-sea bacterial fitness to environmental temperatures and pressure. In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high pressure biology. Academic Press, Toronto, pp 17–32Google Scholar
  98. Yayanos AA, Dietz AS, Vanboxtel R (1979) Isolation of a deep sea barophilic bacterium and some of its growth-characteristics. Science 205:808–810CrossRefPubMedGoogle Scholar
  99. Yayanos AA, Dietz AS, Vanboxtel R (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci USA 78:5212–5215CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876CrossRefPubMedGoogle Scholar
  101. Zeng X, Zhang X, Jiang L et al (2013) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159CrossRefPubMedGoogle Scholar
  102. Zeng X, Zhang Z, Li X et al (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715CrossRefPubMedGoogle Scholar
  103. Zhang J, Sun Q, Zeng Z et al (2015a) Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 177:43–52CrossRefPubMedGoogle Scholar
  104. Zhang Y, Li X, Bartlett DH, Xiao X (2015b) Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles. Curr Opin Biotechnol 33:157–164CrossRefPubMedGoogle Scholar
  105. Zhao W, Xiao X (2015) Complete genome sequence of Thermococcus eurythermalis A501, a conditional piezophilic hyperthermophilic archaeon with a wide temperature range, isolated from an oil-immersed deep-sea hydrothermal chimney on Guaymas Basin. J Biotechnol 193:14–15CrossRefPubMedGoogle Scholar
  106. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohamed Jebbar
    • 1
    Email author
  • Pauline Vannier
    • 2
  • Grégoire Michoud
    • 3
  • Viggó Thór Marteinsson
    • 2
    • 4
  1. 1.Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E)Institut Universitaire Européen de La Mer (IUEM)PlouzanéFrance
  2. 2.Food Safety, Environment and GeneticsMatís Ohf.ReykjavikIceland
  3. 3.Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
  4. 4.Agricultural University of IcelandBorgarnesIceland

Personalised recommendations