Advertisement

The Euphotic Realm

  • Lucas J. Stal
Chapter

Abstract

The euphotic realm of the ocean is defined as the zone that receives enough light to allow photosynthesis. The bottom of the euphotic zone is often set as the depth at which 1 % of the incident sunlight is still available, which is in the open oligotrophic ocean approximately 200 m below the surface. In more turbid coastal waters, the euphotic zone ends at much shallower waters. Whether or not photosynthesis occurs at 1 % of the incident light intensity depends first on the actual value of the latter, on the sun angle, and not in the last place on the organism considered. Even among the same species low and high-light adapted ecotypes exist. The euphotic realm is important because it provides the primary production for the food web of the whole ocean. The microbiome of this realm is therefore characterized by microorganisms that use light. The composition of the microbiome and the ecology is intimately associated with the physicochemical characteristics of the euphotic realm.

Keywords

Extracellular Polymeric Substance Fecal Pellet Euphotic Zone Compensation Point Microbial Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

References

  1. Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, Luo H, González JM, Pinhassi J (2013) Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ Microbiol 15:1400–1415CrossRefPubMedGoogle Scholar
  2. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192CrossRefPubMedGoogle Scholar
  3. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791CrossRefPubMedGoogle Scholar
  4. Beckmann A, Hense I (2007) Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions—a theoretical investigation. Prog Oceanogr 75:771–796CrossRefGoogle Scholar
  5. Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789CrossRefPubMedGoogle Scholar
  6. Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ (2013) Trichodesmium—a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 37:286–302CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borman AH, de Jong EW, Huizinga M, Kok DJ, Westbroek P, Bosch L (1982) The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur J Biochem 129:179–183CrossRefPubMedGoogle Scholar
  8. Bresolin de Souza K, Jephson T, Berg Hasper T, Carlsson P (2014) Species-specific dinoflagellate vertical distribution in temperature-stratified waters. Mar Biol 161:1725–1734CrossRefGoogle Scholar
  9. Buma AGJ, van Hannen EJ, Veldhuis MJW Gieskes WWC (1996) UB-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp. Sci Mar 60(suppl. 1):101–106Google Scholar
  10. Buma AGJ, de Boer MK, Boelen P (2001) Depth distribution of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime radiation. J Phycol 37:200–208CrossRefGoogle Scholar
  11. Carlson CA, Del Giorgio PA, Herndl GJ (2008) Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography 20:89–100CrossRefGoogle Scholar
  12. Caron DA, Worden AZ, Countway PD, Demir E, Heidelberg KB (2009) Protists are microbes too: a perspective. ISME J 3:4–12CrossRefPubMedGoogle Scholar
  13. Cockell CS (2000) Ultraviolet radiation and the photobiology of earth’s early oceans. Orig Life Evol Biosph 30:467–499CrossRefPubMedGoogle Scholar
  14. Cullen JJ (2015) Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu Rev Mar Sci 7:207–239CrossRefGoogle Scholar
  15. Del Giorgio PA, Duarte CM (2002) Respiration in the open ocean. Nature 420:379–384CrossRefPubMedGoogle Scholar
  16. Deschamps P, Haferkamp I, d’Hulst C, Neuhaus HE, Ball SG (2008) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 11:574–582CrossRefGoogle Scholar
  17. Dyhrman ST, Ammerman JW, Van Mooy BAS (2007) Microbes and the marine phosphorus cycle. Ocenography 20:110–116CrossRefGoogle Scholar
  18. Dyhrman ST, Benitez-Nelson CR, Orchard ED, Haley ST, Pellechia PJ (2009) A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci 2:696–699CrossRefGoogle Scholar
  19. Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437CrossRefPubMedPubMedCentralGoogle Scholar
  20. Follows MJ, Dutkiewicz S (2011) Modeling diverse communities of marine microbes. Annu Rev Mar Sci 3:427–451CrossRefGoogle Scholar
  21. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802Google Scholar
  23. Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production. Biogeosciences 3:489–513CrossRefGoogle Scholar
  24. Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8(4):e1000358CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hansell DA, Bates NR, Olson DB (2004) Excess nitrate and nitrogen fixation in the North Atlantic Ocean. Mar Chem 84:243–265CrossRefGoogle Scholar
  26. Herbland A, Voituriez B (1979) Hydrological structure-analysis for estimating the primary production in the tropical Atlantic Ocean. J Mar Res 37:87–101Google Scholar
  27. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–71CrossRefPubMedGoogle Scholar
  28. Holm-Hansen O, Hewes CD (2004) Deep chlorophyll-a maxima (DCMs) in Antarctic waters. Polar Biol 27:699–710CrossRefGoogle Scholar
  29. Holm-Hansen O, Mitchell BG (1991) Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep-Sea Res 38:961–980CrossRefGoogle Scholar
  30. Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100CrossRefGoogle Scholar
  31. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495CrossRefPubMedGoogle Scholar
  32. Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. NZ J Mar Freshw Res 21:457–465CrossRefGoogle Scholar
  33. Lacour L, Claustre H, Prieur L, d’Ortenzio F (2015) Phytoplankton biomass cycles in the North Atlantic subpolar gyre: a similar mechanism for two different blooms in the Labrador Sea. Geophys Res Lett 42:5403–5410CrossRefGoogle Scholar
  34. Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345CrossRefGoogle Scholar
  35. Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278CrossRefPubMedGoogle Scholar
  36. Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54CrossRefGoogle Scholar
  37. Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Béjà O (2003) Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–1731CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mari X, Beauvais S, Lemée R, Pedrotti L (2001) Non-redfield C: N ratio of transparent exopolymeric particles in the northwestern Mediterranean Sea. Limnol Oceanogr 46:1831–1836CrossRefGoogle Scholar
  39. Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT, Evens BS, Martens-Habbena W, Stahl DA, van der Donk WA (2012) Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337:1104–1107CrossRefPubMedPubMedCentralGoogle Scholar
  40. Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson DJ, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514CrossRefPubMedGoogle Scholar
  41. Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638CrossRefGoogle Scholar
  42. Mulholland MR, Bernhardt PW, Blanco-Garcia JL, Mannino A, Hyde K, Mondragon E, Turk K, Moisander PH, Zehr JP (2012) Rates of dinitrogen fixation and the abundance of diazotrophs in North American coastal waters between Cape Hatteras and Georges Bank. Limnol Oceanogr 57:1067–1083CrossRefGoogle Scholar
  43. Nealson KH, Venter JC (2007) Metagenomics and the global ocean survey: what’s in it for us, and why should we care? ISME J 1:185–187CrossRefPubMedGoogle Scholar
  44. Nolting RF, Gerringa LJA, Swagerman MJW, Timmermans KR, de Baar HJW (1998) Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean. Mar Chem 62:335–352CrossRefGoogle Scholar
  45. O’Brien CJ, Vogt M, Gruber N (2016) Global coccolithophore diversity: drivers and future change. Prog Oceanogr 140:27–42CrossRefGoogle Scholar
  46. Obst M, Wehrli B, Dittrich M (2009) CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 7:324–347CrossRefPubMedGoogle Scholar
  47. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263CrossRefPubMedGoogle Scholar
  49. Pedrós-Alió C (2007) Dipping into the rare biosphere. Science 315:192–193CrossRefPubMedGoogle Scholar
  50. Ploug H, Kühl M, Buchholz-Cleven B, Jørgensen BB (1997) Anoxic aggregates—an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol 13:285–294CrossRefGoogle Scholar
  51. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefPubMedGoogle Scholar
  52. Riemann L, Farnelid H, Stewards GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Microb Ecol 61:235–247CrossRefGoogle Scholar
  53. Rijkenberg MJA, Fischer AC, Kroon JJ, Gerringa LJA, Timmermans KR, Wolterbeek HTh, de Baar HJW (2005) The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar Chem 93:119–129CrossRefGoogle Scholar
  54. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5(3):e77CrossRefPubMedPubMedCentralGoogle Scholar
  55. Santoro AE, Casciotti KL (2011) Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 5:1796–1808CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145CrossRefGoogle Scholar
  59. Six C, Thomas J-C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.—a comparative genomics study. Genome Biol 8(12):R259CrossRefPubMedPubMedCentralGoogle Scholar
  60. Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Macintyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion—ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959CrossRefPubMedGoogle Scholar
  61. Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32CrossRefGoogle Scholar
  62. Stal LJ (2009) Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ Microbiol 11:1632–1645CrossRefPubMedGoogle Scholar
  63. Stal LJ, Walsby AE (2000) Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea. Eur J Phycol 35:97–108CrossRefGoogle Scholar
  64. Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007a) Colourful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:271–282PubMedGoogle Scholar
  65. Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007b) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298CrossRefPubMedGoogle Scholar
  66. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  67. van Liere L, Mur LR, Gibson CE, Herdman M (1979) Growth and physiology of Oscillatoria agardhii Gomont cultivated in continuous culture with a light-dark cycle. Arch Microbiol 123:315–318CrossRefGoogle Scholar
  68. Wagener T, Guieu C, Losno R, Bonnet S, Mahowald N (2008) Revisiting atmopsheric dust export to the Southern Hemisphere Ocean: biogeochemical implications. Glob Biogeochem Cycles GB2006 22Google Scholar
  69. Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–1380CrossRefGoogle Scholar
  70. Worden AZ, Not F (2008) Ecology and diversity of picoeukaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, NY, pp 159–205Google Scholar
  71. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE Keeling PJ (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347(6223):1257594 (1-10)Google Scholar
  72. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21CrossRefGoogle Scholar
  73. Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiology 71:1–17CrossRefGoogle Scholar
  74. Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173CrossRefPubMedGoogle Scholar
  75. Zehr JP (2013) Interactions with partners are key for oceanic nitrogen-fixing cyanobacteria. Microbe 8:117–122Google Scholar
  76. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci 3:197–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen BurgThe Netherlands
  2. 2.Department of Aquatic MicrobiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations