Advertisement

Biogeography of Marine Microorganisms

  • Viggó Þór MarteinssonEmail author
  • René Groben
  • Eyjólfur Reynisson
  • Pauline Vannier
Chapter

Abstract

Marine microbial biogeography describes the occurrence and abundance of microbial taxa and aims to understand the mechanisms by which they are dispersed and then adapt to their environment. The development of novel technologies, such as Next-Generation Sequencing (NGS) in combination with large-scale ocean sampling campaigns, generated a vast amount of taxonomic data that allowed for in-depth analyses of biogeographic patterns. Globally occurring groups of microorganisms were detected that dominate the marine environment (e.g., SAR11, SAR86, Roseobacter, and Vibrio), however, NGS data revealed the presence of distinct eco- and phylotypes inside these clades and genera that showed clear ecological niche adaptation and different biogeographic distributions. Genome analyses of these marine microorganisms helped to understand potential adaptive mechanisms that could explain why certain taxa are occurring ubiquitously and others are limited to certain regions and ecosystems. Marine microorganisms can employ a vast variety of adaptive mechanisms to deal with environmental parameters such as temperature, light or nutrient availability, for example through exploitation of specific energy sources or protective mechanisms against UV radiation or viruses. The availability or lack of physiological pathways and traits in ecotypes is then responsible for shaping the marine microbial biogeography.

Keywords

Microbial Community Internal Transcribe Spacer Microbial Diversity Biogeographic Pattern Marine Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

References

  1. Agogue H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20(2):258–274. doi: 10.1111/j.1365-294X.2010.04932.x PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alonso C, Pernthaler J (2006) Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8(11):2022–2030. doi: 10.1111/j.1462-2920.2006.01082.x PubMedCrossRefGoogle Scholar
  3. Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22(3). doi: 10.1029/2007gb003154 Google Scholar
  4. Al-Yamani FY, Skryabin V, Durvasula SRV (2015) Suspected ballast water introductions in the Arabian Gulf. Aquat Ecosyst Health Manage 18(3):282–289. doi: 10.1080/14634988.2015.1027135 Google Scholar
  5. Amaral-Zettler L, Artigas LF, Baross J, Bharathi PAL, Boetius A, Chandramohan D, Herndl G, Kogure K, Neal P, Pedrós-Alió C, Ramette A, Schouten S, Stal L, Thessen A, de Leeuw J, Sogin M (2010) A global census of marine microbes. In: Life in the world’s oceans. Wiley-Blackwell, pp 221–245. doi: 10.1002/9781444325508.ch12 Google Scholar
  6. Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4(4):553–563. doi: 10.1038/ismej.2009.136 PubMedCrossRefGoogle Scholar
  7. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5(10):782–791PubMedCrossRefGoogle Scholar
  8. Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  9. Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague, the NetherlandsGoogle Scholar
  10. Ballarotta M, Falahat S, Brodeau L, Döös K (2014) On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater. Ocean Sci 10(6):907–921CrossRefGoogle Scholar
  11. Barbieri E, Falzano L, Fiorentini C, Pianetti A, Baffone W, Fabbri A, Matarrese P, Casiere A, Katouli M, Kühn I (1999) Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and Non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic coast. Appl Environ Microbiol 65(6):2748–2753PubMedPubMedCentralGoogle Scholar
  12. Bass D, Richards TA, Matthai L, Marsh V, Cavalier-Smith T (2007) DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evol Biol 7:162. doi: 10.1186/1471-2148-7-162 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baumann P, Baumann L (1977) Biology of the marine enterobacteria: genera Beneckea and Photobacterium. Annu Rev Microbiol 31(1):39–61PubMedCrossRefGoogle Scholar
  14. Baumann P, Baumann L, Mandel M (1971) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107(1):268–294PubMedPubMedCentralGoogle Scholar
  15. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110(1):402–429PubMedPubMedCentralGoogle Scholar
  16. Baumann P, Baumann L, Woolkalis MJ, Bang SS (1983) Evolutionary relationships in Vibrio and Photobacterium: a basis for a natural classification. Annu Rev Microbiol 37(1):369–398PubMedCrossRefGoogle Scholar
  17. Beijerinck M (1889) Le Photobacterium luminosum, bactérie lumineuse de la Mer du Nord. Archives Néerlandaises des Sciences Exactes et Naturelles 23:401–427Google Scholar
  18. Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by ribosomal-RNA gene cloning and sequencing. Appl Environ Microbiol 57(6):1707–1713PubMedPubMedCentralGoogle Scholar
  19. Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41(1):15–23. doi: 10.3354/ame041015 CrossRefGoogle Scholar
  20. Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean. ISME J 3(12):1374–1386. doi: 10.1038/ismej.2009.86 PubMedCrossRefGoogle Scholar
  21. Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, Riddle MJ, Fuhrman JA, Andrews-Pfannkoch C, Hoffman JM, McQuaid JB, Allen A, Rintoul SR, Cavicchioli R (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8:595. doi: 10.1038/msb.2012.28 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brown MV, Ostrowski M, Grzymski JJ, Lauro FM (2014) A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 15:17–28. doi: 10.1016/j.margen.2014.03.002 PubMedCrossRefGoogle Scholar
  23. Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K (2009) Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3(3):283–295. doi: 10.1038/ismej.2008.117 PubMedCrossRefGoogle Scholar
  24. Cavicchioli R (2015) Microbial ecology of Antarctic aquatic systems. Nat Rev Microbiol 13(11):691–706PubMedCrossRefGoogle Scholar
  25. Colwell RR, Huq A (1999) Global microbial ecology: biogeography and diversity of Vibrios as a model. J Appl Microbiol 85:134S–137SCrossRefGoogle Scholar
  26. Cowman PF (2014) Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions. Front genet 5:394. doi: 10.3389/fgene.2014.00394 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Davies TJ, Buckley LB, Grenyer R, Gittleman JL (2011) The influence of past and present climate on the biogeography of modern mammal diversity. Philos Trans R Soc B Biol Sci 366(1577):2526–2535. doi: 10.1098/rstb.2011.0018 CrossRefGoogle Scholar
  28. DeLong EF (1997) Marine microbial diversity: the tip of the iceberg. Trends Biotechnol 15(6):203–207. doi: 10.1016/s0167-7799(97)01044-5 PubMedCrossRefGoogle Scholar
  29. DeLong EF (2006) Archaeal mysteries of the deep revealed. Proc Natl Acad Sci USA 103(17):6417–6418. doi: 10.1073/pnas.0602079103 PubMedPubMedCentralCrossRefGoogle Scholar
  30. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311(5760):496–503. doi: 10.1126/science.1120250 PubMedCrossRefGoogle Scholar
  31. Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6(6):1186–1199. doi: 10.1038/ismej.2011.189 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Feng B-W, Li X-R, Wang J-H, Hu Z-Y, Meng H, Xiang L-Y, Quan Z-X (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70(2):236–248. doi: 10.1111/j.1574-6941.2009.00772.x CrossRefGoogle Scholar
  33. Field KG, Gordon D, Wright T, Rappe M, Urbach E, Vergin K, Giovannoni SJ (1997) Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol 63(1):63–70PubMedPubMedCentralGoogle Scholar
  34. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296(5570):1061–1063. doi: 10.1126/science.1070710 PubMedCrossRefGoogle Scholar
  35. Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155(2):237–244. doi: 10.1078/143446104774199619 PubMedCrossRefGoogle Scholar
  36. Finlay BJ, Esteban GF, Brown S, Fenchel T, Hoef-Emden K (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist 157(4):377–390. doi: 10.1016/j.protis.2006.05.012 PubMedCrossRefGoogle Scholar
  37. Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45(2):111–136Google Scholar
  38. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399(6736):541–548PubMedCrossRefGoogle Scholar
  39. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci 105(22):7774–7778PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13(3):133–146. doi: 10.1038/nrmicro3417 PubMedCrossRefGoogle Scholar
  41. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106(52):22427–22432. doi: 10.1073/pnas.0908284106 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Garcia-Martinez J, Rodriguez-Valera F (2000) Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol Ecol 9(7):935–948. doi: 10.1046/j.1365-294x.2000.00953.x PubMedCrossRefGoogle Scholar
  43. Gauthier M (1976) Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can J Microbiol 22(2):138–149PubMedCrossRefGoogle Scholar
  44. Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, Bertilson S, Kirchman DL, Lovejoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA 109(43):17633–17638. doi: 10.1073/pnas.1208160109 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Giebel HA, Brinkhoff T, Zwisler W, Selje N, Simon M (2009) Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean. Environ Microbiol 11(8):2164–2178PubMedCrossRefGoogle Scholar
  46. Gilly WF, Beman JM, Litvin SY, Robison BH (2013) Oceanographic and biological effects of shoaling of the oxygen minimum zone. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, vol 5. Annual reviews, Palo Alto, pp 393–420. doi: 10.1146/annurev-marine-120710-100849 Google Scholar
  47. Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437(7057):343–348. doi: 10.1038/nature04158 PubMedCrossRefGoogle Scholar
  48. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63. doi: 10.1038/345060a0 PubMedCrossRefGoogle Scholar
  49. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245. doi: 10.1126/science.1114057 PubMedCrossRefGoogle Scholar
  50. Heidelberg J, Heidelberg K, Colwell R (2002) Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol 68(11):5488–5497PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hovda MB, Sivertsvik M, Lunestad BT, Lorentzen G, Rosnes JT (2007) Characterisation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiol 24(4):362–371. doi: 10.1016/j.fm.2006.07.018 PubMedCrossRefGoogle Scholar
  52. Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318(5847):97–100PubMedCrossRefGoogle Scholar
  53. Islam M, Mahmuda S, Morshed M, Bakht HB, Khan MN, Sack R, Sack D (2004) Role of cyanobacteria in the persistence of Vibrio cholerae O139 in saline microcosms. Can J Microbiol 50(2):127–131PubMedCrossRefGoogle Scholar
  54. Janvier M, Frehel C, Grimont F, Gasser F (1985) Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int J Syst Bacteriol 35(2):131–139CrossRefGoogle Scholar
  55. Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, Sullivan M, Arendt D, Benzoni F, Claverie J-M, Follows M, Gorsky G, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud EG, Sardet C, Sieracki ME, Speich S, Velayoudon D, Weissenbach J, Wincker P, Tara Oceans C (2011) A holistic approach to marine eco-systems biology. PLoS Biol 9(10). doi: 10.1371/journal.pbio.1001177 Google Scholar
  56. Kembel SW, Eisen JA, Pollard KS, Green JL (2011) The phylogenetic diversity of metagenomes. PLoS ONE 6(8):e23214–e23214PubMedPubMedCentralCrossRefGoogle Scholar
  57. King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, Schmidt SK (2010) Biogeography and habitat modelling of high-alpine bacteria. Nat Commun 1. doi: 10.1038/ncomms1055
  58. Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, Fernandez-Guerra A, Jeanthon C, Rahav E, Ullrich M, Wichels A, Gerdts G, Polymenakou P, Kotoulas G, Siam R, Abdallah RZ, Sonnenschein EC, Cariou T, O’Gara F, Jackson S, Orlic S, Steinke M, Busch J, Duarte B, Cacador I, Canning-Clode J, Bobrova O, Marteinsson V, Reynisson E, Loureiro CM, Luna GM, Quero GM, Loscher CR, Kremp A, DeLorenzo ME, Ovreas L, Tolman J, LaRoche J, Penna A, Frischer M, Davis T, Katherine B, Meyer CP, Ramos S, Magalhaes C, Jude-Lemeilleur F, Aguirre-Macedo ML, Wang S, Poulton N, Jones S, Collin R, Fuhrman JA, Conan P, Alonso C, Stambler N, Goodwin K, Yakimov MM, Baltar F, Bodrossy L, Van De Kamp J, Frampton DM, Ostrowski M, Van Ruth P, Malthouse P, Claus S, Deneudt K, Mortelmans J, Pitois S, Wallom D, Salter I, Costa R, Schroeder DC, Kandil MM, Amaral V, Biancalana F, Santana R, Pedrotti ML, Yoshida T, Ogata H, Ingleton T, Munnik K, Rodriguez-Ezpeleta N, Berteaux-Lecellier V, Wecker P, Cancio I, Vaulot D, Bienhold C, Ghazal H, Chaouni B, Essayeh S, Ettamimi S, Zaid EH, Boukhatem N, Bouali A, Chahboune R, Barrijal S, Timinouni M, El Otmani F, Bennani M, Mea M, Todorova N, Karamfilov V, Ten Hoopen P, Cochrane G, L’Haridon S, Bizsel KC, Vezzi A, Lauro FM, Martin P, Jensen RM, Hinks J, Gebbels S, Rosselli R, De Pascale F, Schiavon R, Dos Santos A, Villar E, Pesant S, Cataletto B, Malfatti F, Edirisinghe R, Silveira JAH, Barbier M, Turk V, Tinta T, Fuller WJ, Salihoglu I, Serakinci N, Ergoren MC, Bresnan E, Iriberri J, Nyhus PAF, Bente E, Karlsen HE, Golyshin PN, Gasol JM, Moncheva S, Dzhembekova N, Johnson Z, Sinigalliano CD, Gidley ML, Zingone A, Danovaro R, Tsiamis G, Clark MS, Costa AC, El Bour M, Martins AM, Collins RE, Ducluzeau A-L, Martinez J, Costello MJ, Amaral-Zettler LA, Gilbert JA, Davies N, Field D, Glockner FO (2015) The ocean sampling day consortium. GigaScience 4:27. doi: 10.1186/s13742-015-0066-5 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kottmann R, Kostadinov I, Duhaime MB, Buttigieg PL, Yilmaz P, Hankeln W, Waldmann J, Gloeckner FO (2010) Megx.net: integrated database resource for marine ecological genomics. Nucleic Acids Res 38:D391–D395. doi: 10.1093/nar/gkp918 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Larsen A, Tao Z, Bullard SA, Arias CR (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85(3):483–494. doi: 10.1111/1574-6941.12136 PubMedCrossRefGoogle Scholar
  61. Larsen AM, Bullard SA, Womble M, Arias CR (2015) Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana salt marsh. Microb Ecol 70(2):534–544. doi: 10.1007/s00248-015-0578-7 PubMedCrossRefGoogle Scholar
  62. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73(3):838–845PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106(37):15527–15533. doi: 10.1073/pnas.0903507106 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lewin R (1969) A classification of flexibacteria. J Gen Microbiol 58(2):189–206PubMedCrossRefGoogle Scholar
  65. Lewin RA, Lounsbery DM (1969) Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol 58(2):145–170PubMedCrossRefGoogle Scholar
  66. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104(27):11436–11440. doi: 10.1073/pnas.0611525104 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Luo H, Moran MA (2014) Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78(4):573–587. doi: 10.1128/mmbr.00020-14 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol 70(7):4129–4135. doi: 10.1128/aem.70.7.4129-4135.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112. doi: 10.1038/nrmicro1341 PubMedCrossRefGoogle Scholar
  70. Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD, Zubkov MV (2006) Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol 42(2):119–126. doi: 10.3354/ame042119 CrossRefGoogle Scholar
  71. Matsumoto K (2007). Radiocarbon-based circulation age of the world oceans. J Geophys Res Oceans (1978–2012) 112(C9). doi: 10.1029/2007JC004095
  72. Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420(6917):806–810. doi: 10.1038/nature01240 PubMedCrossRefGoogle Scholar
  73. Morris RM, Vergin KL, Cho JC, Rappe MS, Carlson CA, Giovannoni SJ (2005) Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr 50(5):1687–1696CrossRefGoogle Scholar
  74. Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40(1):148–158CrossRefGoogle Scholar
  75. Nealson KH, Venter JC (2007) Metagenomics and the global ocean survey: what’s in it for us, and why should we care? ISME J 1(3):185–187. doi: 10.1038/ismej.2007.43 PubMedCrossRefGoogle Scholar
  76. Needham DM, Chow C-ET, Cram JA, Sachdeva R, Parada A, Fuhrman JA (2013) Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J 7(7):1274–1285. doi: 10.1038/ismej.2013.19 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, Knight R (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13(1):135–144. doi: 10.1111/j.1462-2920.2010.02315.x PubMedCrossRefGoogle Scholar
  78. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4(6):784–798. doi: 10.1038/ismej.2009.150 PubMedCrossRefGoogle Scholar
  79. Nicolas J-L, Corre S, Gauthier G, Robert R, Ansquer D (1996) Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Org 27(1):67–76CrossRefGoogle Scholar
  80. Ortigosa M, Esteve C, Pujalte M-J (1989) Vibrio species in seawater and mussels: abundance and numerical taxonomy. Syst Appl Microbiol 12(3):316–325CrossRefGoogle Scholar
  81. Ortigosa M, Garay E, Pujalte M-J (1994) Numerical taxonomy of Vibrionaceae isolated from oysters and seawater along an annual cycle. Syst Appl Microbiol 17(2):216–225CrossRefGoogle Scholar
  82. Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40(6):503–529. doi: 10.2216/i0031-8884-40-6-503.1 CrossRefGoogle Scholar
  83. Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D, Karsenti E, Speich S, Trouble R, Dimier C, Searson S, Tara Oceans Consortium C (2015) Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2:150023. doi: 10.1038/sdata.2015.23
  84. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28(3):231PubMedPubMedCentralGoogle Scholar
  85. Pommier T, Neal PR, Gasol JM, Coll M, Acinas SG, Pedrós-Alió C (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microb Ecol 61(3):221–233. doi: 10.3354/ame01484 CrossRefGoogle Scholar
  86. Radakov DV (1973) Schooling in the ecology of fish. Wiley, Hoboken, NJ, USAGoogle Scholar
  87. Rahmstorf S (2003) Thermohaline circulation: the current climate. Nature 421(6924):699PubMedCrossRefGoogle Scholar
  88. Rappe MS, Vergin K, Giovannoni SJ (2000) Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33(3):219–232. doi: 10.1016/s0168-6496(00)00064-7 PubMedCrossRefGoogle Scholar
  89. Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633. doi: 10.1038/nature00917 PubMedCrossRefGoogle Scholar
  90. Rehnstam A-S, Bäckman S, Smith DC, Azam F, Hagström Å (1993) Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol Lett 102(3):161–166CrossRefGoogle Scholar
  91. Reichelt JL, Baumann P (1973) Taxonomy of the marine, luminous bacteria. Arch für Mikrobiol 94(4):283–330CrossRefGoogle Scholar
  92. Reynisson E, Lauzon HL, Magnusson H, Jonsdottir R, Olafsdottir G, Marteinsson VT, Hreggvidsson GO (2009) Bacterial composition and succession during storage of North-Atlantic cod (Gadus morhua) at superchilled temperatures. BMC Microbiol 9(1):250. doi: 10.1186/1471-2180-9-250 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ruiz GM, Fofonoff PW, Steves BP, Carlton JT (2015) Invasion history and vector dynamics in coastal marine ecosystems: a North American perspective. Aquat Ecosyst Health Manage 18(3):299–311. doi: 10.1080/14634988.2015.1027534 Google Scholar
  94. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3):398–431. doi: 10.1371/journal.pbio.0050077 CrossRefGoogle Scholar
  95. Sabehi G, Beja O, Suzuki MT, Preston CM, DeLong EF (2004) Different SAR86 subgroups harbour divergent proteorhodopsins. Environ Microbiol 6(9):903–910. doi: 10.1111/j.1462-2920.2004.00676.x PubMedCrossRefGoogle Scholar
  96. Saez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK (2003) Pseudo-cryptic speciation in coccolithophores. Proc Natl Acad Sci USA 100(12):7163–7168. doi: 10.1073/pnas.1132069100 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J (2009) Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol 11(8):2078–2093. doi: 10.1111/j.1462-2920.2009.01929.x PubMedCrossRefGoogle Scholar
  98. Schink B, Stams AJ (2013) Syntrophism among prokaryotes. SpringerGoogle Scholar
  99. Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427(6973):445–448. doi: 10.1038/nature02272 PubMedCrossRefGoogle Scholar
  100. Seymour JR, Doblin MA, Jeffries TC, Brown MV, Newton K, Ralph PJ, Baird M, Mitchell JG (2012) Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current. Environ Microbiol Rep 4(5):548–555. doi: 10.1111/j.1758-2229.2012.00362.x PubMedCrossRefGoogle Scholar
  101. Shade A, Carey CC, Kara E, Bertilsson S, McMahon KD, Smith MC (2009) Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies. ISME J 3(8):881–888. doi: 10.1038/ismej.2009.56 PubMedCrossRefGoogle Scholar
  102. Sieburth JN, Johnson PW, Eberhardt MA, Sieracki ME, Lidstrom M, Laux D (1987) The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr Microbiol 14(5):285–293CrossRefGoogle Scholar
  103. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32):12115–12120. doi: 10.1073/pnas.0605127103 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Staley JT (1973) Budding bacteria of the Pasteuria-Blastobacter group. Can J Microbiol 19(5):609–614PubMedCrossRefGoogle Scholar
  105. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577PubMedCrossRefGoogle Scholar
  106. Stevens JL, Olson JB (2015) Bacterial communities associated with lionfish in their native and invaded ranges. Mar Ecol Prog Ser 531:253–262. doi: 10.3354/meps11323 CrossRefGoogle Scholar
  107. Sul WJ, Oliver TA, Ducklow HW, Amaral-Zettler LA, Sogin ML (2013a) Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci USA 110(6):2342–2347. doi: 10.1073/pnas.1212424110 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sul WJ, Oliver TA, Ducklow HW, Amaral-Zettler LA, Sogin ML (2013b) Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci 110(6):2342–2347PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, Landry ZC, Giovannoni SJ (2011) One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6(8). doi: 10.1371/journal.pone.0023973 Google Scholar
  110. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d’Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P, Tara Oceans C (2015) Structure and function of the global ocean microbiome. Science 348(6237). doi: 10.1126/science.1261359 Google Scholar
  111. Svanevik CS, Lunestad BT (2011) Characterisation of the microbiota of Atlantic mackerel (Scomber scombrus). Int J Food Microbiol 151(2):164–170. doi: 10.1016/j.ijfoodmicro.2011.08.016 PubMedCrossRefGoogle Scholar
  112. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, Gonzalez JM, Luo HW, Wright JJ, Landry ZC, Hanson NW, Thompson BP, Poulton NJ, Schwientek P, Acinas SG, Giovannoni SJ, Moran MA, Hallam SJ, Cavicchioli R, Woyke T, Stepanauskas R (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA 110(28):11463–11468. doi: 10.1073/pnas.1304246110 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68(3):403–431PubMedPubMedCentralCrossRefGoogle Scholar
  114. Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, Giovannoni SJ (2009) Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J 3(10):1148–1163. doi: 10.1038/ismej.2009.60 PubMedCrossRefGoogle Scholar
  115. Tseng C-H, Tang S-L (2014) Marine microbial metagenomics: from individual to the environment. Int J Mol Sci 15(5):8878–8892. doi: 10.3390/ijms15058878 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Urakawa H, Yoshida T, Nishimura M, Ohwada K (2000) Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ Microbiol 2(5):542–554PubMedCrossRefGoogle Scholar
  117. van der Gast CJ (2015) Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol 17(3):544–546. doi: 10.1111/1462-2920.12635 PubMedCrossRefGoogle Scholar
  118. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74. doi: 10.1126/science.1093857 PubMedCrossRefGoogle Scholar
  119. Wang X-Q, Ran J-H (2014) Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 75:24–40. doi: 10.1016/j.ympev.2014.02.005 PubMedCrossRefGoogle Scholar
  120. Watson SW (1965) Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. nov. Limnol Oceanogr 10(suppl):R274–R289Google Scholar
  121. Watson SW, Mandel M (1971) Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol 107(2):563–569PubMedPubMedCentralGoogle Scholar
  122. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–6583. doi: 10.1073/pnas.95.12.6578 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wilkins D, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Hoffman JM, Andrews-Pfannkoch C, McQuaid JB, Riddle MJ, Rintoul SR, Cavicchioli R (2013a) Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environ Microbiol 15(5):1318–1333. doi: 10.1111/1462-2920.12035 PubMedCrossRefGoogle Scholar
  124. Wilkins D, van Sebille E, Rintoul SR, Lauro FM, Cavicchioli R (2013b) Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat Commun 4. doi: 10.1038/ncomms3457
  125. Wilson B, Danilowicz BS, Meijer WG (2008) The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microb Ecol 55(3):425–434. doi: 10.1007/s00248-007-9288-0 PubMedCrossRefGoogle Scholar
  126. Wood SA, Smith KF, Banks JC, Tremblay LA, Rhodes L, Mountfort D, Cary SC, Pochon X (2013) Molecular genetic tools for environmental monitoring of New Zealand’s aquatic habitats, past, present and the future. NZ J Mar Freshwat Res 47(1):90–119. doi: 10.1080/00288330.2012.745885 CrossRefGoogle Scholar
  127. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson K, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers Y-H, Friedman R, Frazier M, Venter JC (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468(7320):60–66. doi: 10.1038/nature09530 Google Scholar
  128. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. doi: 10.1021/es401288x PubMedGoogle Scholar
  129. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494(7437):357–360. doi: 10.1038/nature11921 PubMedCrossRefGoogle Scholar
  130. Zika JD, England MH, Sijp WP (2012) The ocean circulation in thermohaline coordinates. J Phys Oceanogr 42(5):708–724CrossRefGoogle Scholar
  131. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Martiny JBH, Sogin M, Boetius A, Ramette A (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6(9):e24570. doi: 10.1371/journal.pone.0024570 PubMedPubMedCentralCrossRefGoogle Scholar
  132. ZoBell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. University of California Press, Oakland, CA, USAGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Viggó Þór Marteinsson
    • 1
    • 2
    • 3
    Email author
  • René Groben
    • 1
  • Eyjólfur Reynisson
    • 1
  • Pauline Vannier
    • 1
  1. 1.Matís ohf./Food Safety, Environment and Genetics113 ReykjavíkIceland
  2. 2.University of Iceland101 ReykjavíkIceland
  3. 3.Agricultural University of IcelandIS-311 BorgarnesIceland

Personalised recommendations