Advertisement

Marine Viruses

  • Corina P.D. Brussaard
  • Anne-Claire Baudoux
  • Francisco Rodríguez-Valera
Chapter

Abstract

With an estimated global abundance of 1030, viruses represent the most abundant biological entities in the ocean. There is emergent awareness that viruses represent a driving force not only for the genetic evolution of the microbial world but also the functioning marine ecosystems. Culture studies advance our understanding how viruses regulate host population dynamics, but retrieving virus and host in pure culture can be difficult. Recent developments in high-throughput sequencing provide insights into the diversity and complexity of viral populations. This chapter describes current milestones in the burgeoning field of marine viral ecology, including the different aspects of marine viral action, viral diversity, ecological and biogeochemical implications of marine viruses, the cultivation of virus-host systems, and biotechnological applications of these astonishing microorganisms.

Keywords

Ballast Water Burst Size Host Culture Phage Therapy Lytic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

References

  1. Abedon ST (2000) The murky origin of Snow White and her T-even dwarfs. Genetics 155:481–486PubMedPubMedCentralGoogle Scholar
  2. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci 108:17486–17491PubMedPubMedCentralCrossRefGoogle Scholar
  4. Atad I, Zvuloni A, Loya Y, Rosenberg E (2012) Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs 31:665–670CrossRefGoogle Scholar
  5. Attoui H, Mohd Jaafar F, Belhouchet M, de Micco P, de Lamballerie X, Brussaard CPD (2006) Micromonas pusila reovirus: a new member of the family Reoviridae assigned to a novel proposed genus (Mimoreovirus). J Gen Virol 87:1375–1383PubMedCrossRefGoogle Scholar
  6. Avrani S, Schwartz DA, Lindell D (2012) Virus-host swinging party in the oceans: Incorporating biological complexity into paradigms of antagonistic coexistence. Mobile Genetic Elements 2:88–95PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baudoux A-C, Brussaard CPD (2005) Characterization of different viruses infecting Phaeocystis globosa. Virology 341:80–90PubMedCrossRefGoogle Scholar
  8. Baudoux A-C, Brussaard CPD (2008) Influence of irradiance on viral-algal host interactions. J Phycol 44:902–908PubMedCrossRefGoogle Scholar
  9. Baudoux AC, Noordeloos AAM, Veldhuis MJW, Brussaard CPD (2006) Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Microb Ecol 44:207–217CrossRefGoogle Scholar
  10. Baudoux A-C, Veldhuis MJW, Witte HJ, Brussaard CPD (2007) Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr 52:2519–2529CrossRefGoogle Scholar
  11. Baudoux A-C, Hendrix RW, Lander GC, Bailly X, Podell S, Paillard C, Johnson JE, Potter CS, Carragher B, Azam F (2012) Genomic and functional analysis of vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ Microbiol 14:2071–2086PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baudoux A-C, Lebredonchel H, Dehmer H, Latimier M, Edern R, Rigaut-Jalabert F, Latimier M, Moreau H, Simon N (2015) Interplay between the genetic clades of micromonas and their viruses in the Western English Channel. Environmental Microbiology Reports 7:765–773PubMedCrossRefGoogle Scholar
  13. Bratbak G, Egge JK, Heldal M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser 93:39–48CrossRefGoogle Scholar
  14. Bratbak G, Jacobsen A, Heldal M, Nagasaki K, Thingstad F (1998) Virus production in Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquat Microb Ecol 16:1–9CrossRefGoogle Scholar
  15. Breitbart M (2012) Marine viruses: truth or dare. Ann Rev Mar Sci 4:425–448PubMedCrossRefGoogle Scholar
  16. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004) Diversity and population structure of a near–shore marine–sediment viral community. Proc R Soc Lond B Biol Sci 271:565–574CrossRefGoogle Scholar
  17. Brum JR, Sullivan MB (2015) Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13:147–159PubMedCrossRefGoogle Scholar
  18. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, Sullivan MB (2015) Patterns and ecological drivers of ocean viral communities. Science 348:1261498PubMedCrossRefGoogle Scholar
  19. Brussaard CPD (2004a) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brussaard CPD, Martínez-Martínez J (2008) Algal bloom viruses. Plant Viruses 2(1):1–13Google Scholar
  21. Brussaard CPD, Riegman R, Noordeloos AAM, Cadee GC, Witte H, Kop AJ, Nieuwland G, van Duyl FC, Bak RPM (1995) Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123:259–271CrossRefGoogle Scholar
  22. Brussaard CPD, Gast GJ, Van Duyl FC, Riegman R (1996a) Impact of phytoplankton bloom magnitude on pelagic microbial food web. Mar Ecol Prog Ser 144:211–221CrossRefGoogle Scholar
  23. Brussaard CPD, Kempers RS, Kop AJ, Riegman R, Heldal M (1996b) Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat Microb Ecol 10:105–113CrossRefGoogle Scholar
  24. Brussaard CPD, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85:175–182PubMedCrossRefGoogle Scholar
  25. Brussaard CPD, Noordeloos AAM, Sandaa R-A, Heldal M, Bratbak G (2004a) Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319:280–291PubMedCrossRefGoogle Scholar
  26. Brussaard CPD, Short SM, Frederickson CM, Suttle CA (2004b) Isolation and phylogenetic analysis of novel viruses infecting the phytoplankter Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol 70:3700–3705PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa population dynamics. II. Significance for the microbial community. Harmful Algae 4:875–893CrossRefGoogle Scholar
  28. Brussaard CPD, Wilhelm SW, Thingstad F, Weinbauer MG, Bratbak G, Heldal M, Kimmance SA, Middelboe M, Nagasaki K, Paul JH, Schroeder DC, Suttle CA, Vaque D, Wommack KE (2008) Global-scale processes with a nanoscale drive: the role of marine viruses. The ISME Journal 2:575–578PubMedCrossRefGoogle Scholar
  29. Chen F, Suttle CA (1995) Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl Environ Microbiol 61:1274–1278PubMedPubMedCentralGoogle Scholar
  30. Clokie MR, Shan J, Bailey S, Jia Y, Krisch HM, West S, Mann NH (2006) Transcription of a ‘photosynthetic’ T4-type phage during infection of a marine cyanobacterium. Environ Microbiol 8:827–835PubMedCrossRefGoogle Scholar
  31. Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng X-W, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D (2013) Megavirales, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2517–2521PubMedPubMedCentralCrossRefGoogle Scholar
  32. Culley AI, Lang AS, Suttle CA (2006) Metagenomic analysis of coastal RNA virus communities. Science 312:1795–1798PubMedCrossRefGoogle Scholar
  33. Danovaro R, Middelboe M (2010) Separation of free virus particles from sediments in aquatic systems. In: Wilhelm SW, Weinbauer MG, Suttle CA, Waco TX (eds) Manual of aquatic viral ecology. ASLO, pp 74–81Google Scholar
  34. Danovaro R, Corinaldesi C, Filippini M, Fischer UR, Gessner MO, Jacquet S, Magagnini M, Velimirov B (2008) Viriobenthos in freshwater and marine sediments: a review. Freshw Biol 53:1186–1213CrossRefGoogle Scholar
  35. Derelle E, Ferraz C, Escande ML, Eychenié S, Cooke R, Piganeau G, Desdevises Y, Bellec L, Moreau H, Grimsley N (2008) Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri. PlosOne 3(5):e2250. doi: 10.1371/journal.pone.0002250 CrossRefGoogle Scholar
  36. Derelle E, Monier A, Cooke R, Worden AZ, Grimsley NH, Moreau H (2015) Diversity of Viruses Infecting the Green Microalga Ostreococcus lucimarinus. J Virol 89:5812–5821PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nature Communications 5:4498PubMedPubMedCentralCrossRefGoogle Scholar
  38. Efrony R, Loya Y, Bacharach E, Rosenberg E (2007) Phage therapy of coral disease. Coral Reefs 26:7–13CrossRefGoogle Scholar
  39. Efrony R, Atad I, Rosenberg E (2009) Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol 58:139–145PubMedCrossRefGoogle Scholar
  40. Ellis EL, Delbrück M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384PubMedPubMedCentralCrossRefGoogle Scholar
  41. Evans C, Archer SD, Jacquet S, Wilson WH (2003) Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol 30:207–219CrossRefGoogle Scholar
  42. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332(6026):231–234Google Scholar
  43. Fischer MG, Allen MJ, Wilson WH, Suttle CA (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci 107:19508–19513PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fischlechner M, Donath E (2007) Viruses as building blocks for materials and devices. Angew Chem Int Ed 46:3184–3193CrossRefGoogle Scholar
  45. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS (2011) Statistical structure of host-phage interactions. Proc Nat Acad Sci USA 108:E288–E297PubMedPubMedCentralCrossRefGoogle Scholar
  46. Flores CO, Valverde S, Weitz JS (2013) Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J 7:520–532PubMedPubMedCentralCrossRefGoogle Scholar
  47. Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40:151–160PubMedPubMedCentralCrossRefGoogle Scholar
  48. Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C (2008) The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci 105:15944–15949PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol 10:382–387PubMedCrossRefGoogle Scholar
  50. Garcia-Doval C, van Raaij MJ (2013) Bacteriophage receptor recognition and nucleic acid transfer. Structure and physics of viruses. Springer, Berlin, pp 489–518Google Scholar
  51. Garza DR, Suttle CA (1995) Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities. Aquat Microb Ecol 9:203–210CrossRefGoogle Scholar
  52. Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote,“Pyrococcus abyssi”. J Bacteriol 185:3888–3894Google Scholar
  53. Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, Verdu M, Deschamps P, Moreira D, Lopez-Garcia P, Mira A, Rodriguez-Valera F (2010) Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J 4:1154–1166PubMedCrossRefGoogle Scholar
  54. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3:2471PubMedPubMedCentralCrossRefGoogle Scholar
  55. Glud RN, Middelboe M (2004) Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol Oceanogr 49:2073–2081CrossRefGoogle Scholar
  56. Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Sanudo Wilhelmy SA (1997) Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol Oceanogr 42:1492–1504CrossRefGoogle Scholar
  57. Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 14:503–516PubMedCrossRefGoogle Scholar
  58. Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–2012CrossRefGoogle Scholar
  59. Hewson I, O’Niel JM, Fuhrman JA, Dennison WC (2001) Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 46:1734–1746CrossRefGoogle Scholar
  60. Hidaka T (1977) Detection and isolation of marine bacteriophage systems in the southwestern part of the Pacific Ocean. Mem Fac Fish Kagoshima Univ 26:55–62Google Scholar
  61. Hidaka T, Fujimura T (1971) A morphological study of marine bacteriophages. Mem Fac Fish Kagoshima Univ 20:141–154Google Scholar
  62. Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L, Verberkmoes NC (2013) Twelve previously unknown phage genera are ubiquitous in global oceans. Proc Nat Acad Sci USA 110:12798–12803PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hurwitz BL, Hallam SJ, Sullivan MB (2013) Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol 14:R123PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hutchinson GE (1961) Theparadoxoftheplankton. Am Nat 95:137–145CrossRefGoogle Scholar
  65. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927CrossRefGoogle Scholar
  66. Jacobsen A, Larsen A, Martínez-Martínez J, Verity PG, Frischer ME (2007) Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquat Microb Ecol 48:105–112CrossRefGoogle Scholar
  67. Jiang SC, Paul JH (1998) Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb Ecol 35:235–243PubMedCrossRefGoogle Scholar
  68. Johannessen TV, Bratbak G, Larsen A, Ogata H, Egge ES, Edvardsen B, Eikrem W, Sandaa RA (2015) Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology 476:180–188PubMedCrossRefGoogle Scholar
  69. Kang I, Oh HM, Kang D, Cho JC (2013) Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci 110:12343–12348PubMedPubMedCentralCrossRefGoogle Scholar
  70. Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292CrossRefGoogle Scholar
  71. Kimmance SA, Brussaard CPD (2010) Estimation of viral-induced phytoplankton mortality using the modified dilution method. Limnol Oceanogr Methods 7:65–73Google Scholar
  72. Kimura K, Tomaru Y (2013) Isolation and characterization of a single-stranded DNA virus infecting the marine diatom Chaetoceros sp. strain SS628–11 isolated from western Japan. PLoS ONE 8:e82Google Scholar
  73. Kimura K, Tomaru Y (2015) Discovery of two novel viruses expands the diversity of ssDNA and ssRNA viruses infecting a cosmopolitan marine diatom. Appl Environ Microbiol 81:1120–1131PubMedPubMedCentralCrossRefGoogle Scholar
  74. La Scola B, Audic S, Robert C (2003) A giant virus in amoebae. Science 299:2033PubMedCrossRefGoogle Scholar
  75. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455:100–104PubMedCrossRefGoogle Scholar
  76. Labonté JM, Suttle CA (2013a) Metagenomic and whole-genome analysis reveals new lineages of gokushoviruses and biogeographic separation in the sea. Front Microbiol 4:404PubMedPubMedCentralCrossRefGoogle Scholar
  77. Labonté JM, Suttle CA (2013b) Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J 7:2169–2177PubMedPubMedCentralCrossRefGoogle Scholar
  78. Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, Sullivan MB, Woyke T, Wommack KE, Stepanauskas R (2015) Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9:2386–2399PubMedPubMedCentralCrossRefGoogle Scholar
  79. Laguna R, Romo J, Read BA, Wahlund TM (2001) Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Appl Environ Microbiol 67:3824–3831PubMedPubMedCentralCrossRefGoogle Scholar
  80. Leggett HC, Buckling A, Long GH, Boots M (2013) Generalism and the evolution of parasite virulence. Trends Ecol Evol 28(10):592–596PubMedCrossRefGoogle Scholar
  81. Lenski RE (1988) Dynamics of interactions between bacteria and virulent bacteriophage. In: Advances in microbial ecology. Springer, New York, pp 1–44Google Scholar
  82. Lohr J, Munn CB, Wilson WH (2007) Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl Environ Microbiol 73:2976–2981PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lønborg C, Middelboe M, Brussaard CPD (2013) Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116:231–240CrossRefGoogle Scholar
  84. Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, Farasin J, Bienvenu N, Baudoux A-C, Michoud G, Jebbar M, Geslin C (2015) ‘Ménage à trois’: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17:3278–3288PubMedCrossRefGoogle Scholar
  85. Løvdal T, Eichner C, Grossart H-P, Carbonnel V, Chou L, Martin-Jezequel V, Thingstad TF (2008) Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom. Biogeosciences 5:371–383CrossRefGoogle Scholar
  86. Maat DS, Crawfurd KJ, Timmermans KR, Brussaard CPD (2014) Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl Environ Microbiol 80:3119–3127PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mackinder LC, Worthy CA, Biggi G, Hall M, Ryan KP, Varsani A, Harper GM, Wilson WH, Brownlee C, Schroeder DC (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90:2306–2316PubMedCrossRefGoogle Scholar
  88. Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424:741PubMedCrossRefGoogle Scholar
  89. Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance? Harmful Algae 4:895–914CrossRefGoogle Scholar
  90. Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C (2012) Rapid diversification of coevolving marine Synechococcus and a virus. Proc Nat Acad Sci USA 109:4544–4549Google Scholar
  91. Martínez-Díaz SF, Hipólito-Morales A (2013) Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture 400–401:120–124CrossRefGoogle Scholar
  92. Martínez-Martínez J, Schroeder DC, Larsen A, Bratbak G, Wilson WH (2007) Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol 73:554–562CrossRefGoogle Scholar
  93. Martínez-Martínez J, Swan BK, Wilson WH (2014) Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J 8:1079–1088PubMedCrossRefGoogle Scholar
  94. Martínez-Martínez J, Boere A, Gilg I, van Lent JW, Witte HJ, van Bleijswijk JDL, Brussaard CPD (2015) New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat Microb Ecol 74:17–28CrossRefGoogle Scholar
  95. Matsuzaki S, Tanaka S, Koga T, Kawata T (1992) A broad-host-range vibriophage, KVP40, isolated from sea water. Microbiol Immunol 36:96–97CrossRefGoogle Scholar
  96. McDaniel L, Houchin LA, Williamson SJ, Paul JH (2002) Lysogeny in marine Synechococcus. Nature 451:496CrossRefGoogle Scholar
  97. Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R (2013) Expanding the marine virosphere using metagenomics. PLoS Genet 9:e1003987PubMedPubMedCentralCrossRefGoogle Scholar
  98. Moebus K, Nattkemper H (1981) Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgoländer Meeresuntersuchungen 34:375–385CrossRefGoogle Scholar
  99. Moebus K, Nattkemper H (1983) Taxonomic investigations of bacteriophage sensitive bacteriaisolated from marine waters. Helgolhnder Meeresunters 36:357–373Google Scholar
  100. Mojica KDA, Brussaard CPD (2014) Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol 89:495–515Google Scholar
  101. Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD (2015) Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. doi: 10.1038/ismej.2015.130 PubMedGoogle Scholar
  102. Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, Wilhelm SW (2014) Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host–virus coevolution. Virology 466:60–70PubMedCrossRefGoogle Scholar
  103. Morin PJ (2008) Sex as an algal antiviral strategy. Proc Natl Acad Sci 105:15639–15640PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint I, Mann NH (2005) Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol 7:499–508PubMedCrossRefGoogle Scholar
  105. Murray AG, Smith RJ, Stagg RM (2002) Shipping and the spread of infectious Salmon Anemia in Scottish aquaculture. Emerg Infect Dis 8:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nagasaki K, Bratbak G (2010) Isolation of viruses infecting photosynthetic and nonphotosynthetic protists. In: Wilhelm SW, Weinbauer MG, Suttle CA, Waco TX (eds) Manual of aquatic viral ecology. ASLO, pp 92–101Google Scholar
  107. Nagasaki K, Tarutani K, Yamaguchi M (1999) Cluster analysis on algicidal activity of HaV clones and virus sensitivity of Heterosigma akashiwo (Raphidophyceae). J Plankton Res 21:2219–2226CrossRefGoogle Scholar
  108. Nagasaki K, Tomaru Y, Katanozaka N, Shirai Y, Nishida K, Itakura S, Yamaguchi M (2004) Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera. Appl Environ Microbiol 70:704–711PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nagasaki K, Tomaru Y, Takao Y, Nishida K, Shirai Y, Suzuki H, Nagumo T (2005) Previously unknown virus infects marine diatom. Appl Environ Microbiol 71:3528–3535PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18PubMedCrossRefGoogle Scholar
  111. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  112. Noble RT, Fuhrman JA (2000) Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. Appl Environ Microbiol 66:3790–3797PubMedPubMedCentralCrossRefGoogle Scholar
  113. Oliveira J, Castilho F, Cunha A, Pereira MJ (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult Int 20:879–910CrossRefGoogle Scholar
  114. Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589PubMedCrossRefGoogle Scholar
  115. Paul JH, Weinbauer MG (2010) Detection of lysogeny in marine environments. In: Wilhelm SW, Weinbauer MG, Suttle CA, Waco TX (eds) Manual of aquatic viral ecology. ASLO, pp 30–33Google Scholar
  116. Paul JH, Cochran PK, Jiang SC (1999) Lysogeny and transduction in the marine environment. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, CanadaGoogle Scholar
  117. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie J-M, Abergel C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286PubMedCrossRefGoogle Scholar
  118. Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW (2004) Viral release of Fe and its bioavailability to marine plankton. Limnol Oceanogr 49:1734–1741CrossRefGoogle Scholar
  119. Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF (2015) Science education alliance phage hunters advancing, S. Evolutionary, R. Phage Hunters Integrating, Education and C. Mycobacterial Genetics. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 4:e06416Google Scholar
  120. Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62CrossRefGoogle Scholar
  121. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350PubMedCrossRefGoogle Scholar
  122. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751PubMedCrossRefGoogle Scholar
  123. Rodriguez-Valera F, Ussery DW (2012) Is the pan-genome also a pan-selectome? F1000Res 1:16Google Scholar
  124. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira R (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836PubMedCrossRefGoogle Scholar
  125. Rodriguez-Valera F, Mizuno CM, Ghai R (2014) Tales from a thousand and one phages. Bacteriophage 4:e28265PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, Farooq Azam F (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr 45:408–418CrossRefGoogle Scholar
  127. Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S, Aharoni A, Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A (2014) Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the Ocean. Plant Cell 26:2689–2707PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ruardij P, Veldhuis MJW, Brussaard CPD (2005) Modelling the development and termination of a Phaeocystis bloom. Harmful Algae 4:941–963CrossRefGoogle Scholar
  129. Sánchez-Paz A, Muhlia-Almazan A, Saborowski R, García-Carreño F, Sablok G, Mendoza-Cano F (2014) Marine viruses: the beneficial side of a threat. Appl Biochem Biotechnol 174:2368–2379PubMedCrossRefGoogle Scholar
  130. Sandaa R-A, Larsen A (2006) Seasonal variations in virus-host populations in Norwegian coastal waters: focusing on the cyanophage community infecting marine Synechococcus spp. Appl Environ Microbiol 72:4610–4618PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sandaa R-A, Heldal M, Castberg T, Thyrhaug R, Bratbak G (2001) Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymneriophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290:272–280PubMedCrossRefGoogle Scholar
  132. Sanmukh SG, Khairnar K, Chandekar RH, Paunikar WN (2014) Increasing the extraction efficiency of algal lipid for biodiesel production: novel application of algal viruses. Afr J Biotechnol 13:1666–1670CrossRefGoogle Scholar
  133. Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Berbe V, Wommack KE, Noordeloos AAM, Brussaard CPD, Claverie J-M (2013) Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci 110:10800–10805PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 57:43–66CrossRefGoogle Scholar
  135. Schroeder DC, Oke J, Malin G, Wilson WH (2002) Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi. Arch Virol 147:1685–1698PubMedCrossRefGoogle Scholar
  136. Shirai Y, Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K (2008) Isolation and characterization of a singlestranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl Environ Microbiol 74:4022–4027PubMedPubMedCentralCrossRefGoogle Scholar
  137. Short SM (2012) The ecology of viruses that infect eukaryotic algae. Environ Microbiol 14:2253–2271PubMedCrossRefGoogle Scholar
  138. Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sintes E, Del Giorgio PA (2014) Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front Microbiol 5:453PubMedPubMedCentralCrossRefGoogle Scholar
  140. Spencer R (1955) A marine bacteriophage. Nature 175:690–691PubMedCrossRefGoogle Scholar
  141. Spencer R (1960) Indigenous marine bacteriophages. J Bacteriol 79:614PubMedPubMedCentralGoogle Scholar
  142. Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of microbes. BioEssays 33:43–51PubMedPubMedCentralCrossRefGoogle Scholar
  143. Steward GF, Wikner J, Cochlan WP, Smith DC, Azam F (1992) Estimation of virus production in the sea. II: field results. Mar Microb Food Webs 6:79–90Google Scholar
  144. Stopar D, Černe A, Žigman M, Poljšak-Prijatelj M, Turk V (2004) Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. Microb Ecol 47:1–8PubMedCrossRefGoogle Scholar
  145. Sullivan MB, Waterbury JB, Chisholm SW (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424:1047–1051PubMedCrossRefGoogle Scholar
  146. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, Chisholm SW (2009) The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol 11:2935–2951PubMedPubMedCentralCrossRefGoogle Scholar
  148. Suttle CA (2005) Viruses in the sea. Nature 437:356–361PubMedCrossRefGoogle Scholar
  149. Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedCrossRefGoogle Scholar
  150. Suttle CA, Chan AM (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 60:3167–3174PubMedPubMedCentralGoogle Scholar
  151. Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58:3721–3729PubMedPubMedCentralGoogle Scholar
  152. Suttle CA, Chan AM, Cottrell MT (1995) Viruses infecting the marine Prymnesiophyte Chrysochromulina spp.: isolation, preliminary characterization and natural abundance. Mar Ecol Prog Ser 118:275–282CrossRefGoogle Scholar
  153. Taruntani K, Nagasaki K, Yamaguchi M (2000) Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl Environ Microbiol 66:4916–4920CrossRefGoogle Scholar
  154. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328CrossRefGoogle Scholar
  155. Thingstad TF, Pree B, Giske J, Våge S (2015) What difference does it make if viruses are strain-, rather than species-specific? Front Microbiol 6:320PubMedPubMedCentralCrossRefGoogle Scholar
  156. Thomas R, Grimsley N, Escande ML, Subirana L, Derelle E, Moreau H (2011) Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ Microbiol 13:1412–1420PubMedCrossRefGoogle Scholar
  157. Tomaru Y, Shirai Y, Suzuki H, Nagumo T, Nagasaki K (2008) Isolation and characterization of a new single-stranded DNA virus infecting the cosmopolitan marine diatom Chaetoceros debilis. Aquat Microb Ecol 50:103–112CrossRefGoogle Scholar
  158. Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K (2009) Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl Environ Microbiol 75:2375–2381PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tomaru Y, Fujii N, Oda S, Toyoda K, Nagasaki K (2011a) Dynamics of diatom viruses on the western coast of Japan. Aquat Microb Ecol 63:223–230CrossRefGoogle Scholar
  160. Tomaru Y, Shirai Y, Toyoda K, Nagasaki K (2011b) Isolation and characterisation of a single-stranded DNA Virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Aquat Microb Ecol 64:175–184CrossRefGoogle Scholar
  161. Tomaru Y, Takao Y, Suzuki H, Nagumo T, Koike K, Nagasaki K (2011c) Isolation and characterization of a single-stranded DNA virus infecting Chaetoceros lorenzianus Grunow. Appl Environ Microbiol 77:5285–5293PubMedPubMedCentralCrossRefGoogle Scholar
  162. Tomaru Y, Toyoda K, Kimura K, Hata N, Yoshida M, Nagasaki K (2012) First evidence for the existence of pennate diatom viruses. ISME J 6:1445–1448PubMedPubMedCentralCrossRefGoogle Scholar
  163. Tomaru Y, Toyoda K, Kimura K, Takao Y, Sakurada K, Nakayama N, Nagasaki K (2013a) Isolation and characterization of a single-stranded RNA virus that infects the marine planktonic diatom Chaetoceros sp. (SS08-C03). Phycol Res 61:27–36CrossRefGoogle Scholar
  164. Tomaru Y, Toyoda K, Suzuki H, Nagumo T, Kimura K, Takao Y (2013b) New single-stranded DNA virus with a unique genomic structure that infects marine diatom Chaetoceros setoensis. Scientific Reports 3:3337PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tomaru Y, Toyoda K, Kimura K (2015) Marine diatom viruses and their hosts: Resistance mechanisms and population dynamics. Perspect Phycol 2:69–81CrossRefGoogle Scholar
  166. Våge S, Storesund JE, Thingstad TF (2013) SAR11 viruses and defensive host strains. Nature 499:E3–E4PubMedCrossRefGoogle Scholar
  167. Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399PubMedPubMedCentralGoogle Scholar
  168. Weinbauer MG, Suttle CA (1996) Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Appl Environ Microbiol 62:4374–4380PubMedPubMedCentralGoogle Scholar
  169. Weinbauer MG, Brettar I, Hofle MG (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr 48:1457–1465CrossRefGoogle Scholar
  170. Weinbauer MG, Rowe JM, Wilhelm S (2010) Determining rates of virus production in aquatic systems by the virus reduction approach. In: Wilhelm SW, Weinbauer MG, Suttle CA, Waco TX (eds) Manual of aquatic viral ecology. ASLO, pp 1–8Google Scholar
  171. Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME (2013) Phage–bacteria infection networks. Trends Microbiol 21:82–91PubMedCrossRefGoogle Scholar
  172. Wilhelm SW, Carberry MJ, Eldridge ML, Poorvin L, Saxton MA, Doblin MA (2006) Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Appl Environ Microbiol 72:4957–4963PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wilson WH (2005) The versatility of giant algal viruses: from shunting carbon to antiwrinkle cream. Ocean Challenge 14:8–9Google Scholar
  174. Wilson WH, Carr NG, Mann NH (1996) The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J Phycol 32:506–516CrossRefGoogle Scholar
  175. Wilson WH, Schroeder DC, Allen MJ, Holden MT, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P (2005) Complete genome sequence and lytic phase transcription profile of a coccolithovirus. Science 309:1090–1092PubMedCrossRefGoogle Scholar
  176. Zeigler Allen L, Ishoey T, Novotny MA, McLean JS, Lasken RS, Williamson SJ (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6:e17722CrossRefGoogle Scholar
  177. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494:357–360PubMedCrossRefGoogle Scholar
  178. Zingone A, Natale F, Biffali E, Borra M, Forlani G, Sarno D (2006) Diversity in morphology, infectivity, molecular characteristics and induced host resistance between two viruses infecting Micromonas pusilla. Aquat Microb Ecol 45:1–14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Corina P.D. Brussaard
    • 1
    • 2
  • Anne-Claire Baudoux
    • 3
  • Francisco Rodríguez-Valera
    • 4
  1. 1.Department of Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
  2. 2.Department of Aquatic MicrobiologyInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamThe Netherlands
  3. 3.Sorbonne Universités, UPMC Université de Paris 06, CNRS, Adaptation et Diversité en Milieu Marin (AD2M UMR7144)RoscoffFrance
  4. 4.Evolutionary Genomics GroupUniversidad Miguel HernandezAlicanteSpain

Personalised recommendations