Bacterial Resistance to Host Defence Peptides

  • David A. Phoenix
  • Sarah R. Dennison
  • Frederick Harris


Currently, antimicrobial drug resistance is a global problem that threatens to precipitate a ‘Post-antibiotic era’ in which the ability of common infections and minor injuries to kill is a very real possibility. A potential solution to this problem is the development of host defence peptides, which are endogenous antibiotics that kill microbes via membranolytic action, based in part on the belief that microbes were unlikely to develop resistance to this action. However, the incidence of microbes exhibiting resistance to the action of host defence peptides is growing and an increasingly diverse spectrum of mechanisms is being reported to underpin this resistance. These mechanisms can be broadly categorized as those that either: destroy these peptides, such as through the production of bacterial proteases; intercept/shield these peptides, such as by the release of host cell proteoglycans by bacterial enzymes; or export these peptides, such as via the use of bacterial efflux pumps. Here we give an overview of these mechanisms, with a focus on recent developments in this area, and then discuss the potential of inhibitors of these resistance mechanisms to treat infections due to bacterial pathogens.


Cytoplasmic Membrane Efflux Pump Efflux System Major Facilitator Superfamily Major Facilitator Superfamily Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelsalam M, Asheg A, Eissa AE (2013) Streptococcus dysgalactiae: An emerging pathogen of fishes and mammals. Int J Vet Sci Med 1(1):1–6CrossRefGoogle Scholar
  2. Agus A et al (2014) Understanding host-adherent-invasive Escherichia coli interaction in crohn’s disease: opening up new therapeutic strategies. Biomed Res Int 2014:16CrossRefGoogle Scholar
  3. Åkesson P, Sjöholm AG, Björck L (1996) Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem 271(2):1081–1088PubMedCrossRefGoogle Scholar
  4. Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci 90(11):5181–5185PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alteri CJ et al (2011) The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 82(1):145–163PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alvarez-Ortega C, Olivares J, Martinez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol 4Google Scholar
  7. Amaral L et al (2012) Structure, genetic regulation, physiology and function of the AcrAB-TolC efflux pump of Escherichia coli and Salmonella. In: Tegos G, Mylonakis E (ed) Antimicrobial drug discovery: emerging strategies, pp 44–61Google Scholar
  8. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134Google Scholar
  9. Anaya-Lopez JL, Lopez-Meza JE, Ochoa-Zarzosa A (2013) Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 39(2):180–195Google Scholar
  10. Andersen JL et al (2015) Multidrug efflux pumps from enterobacteriaceae, vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12(2):1487–1547Google Scholar
  11. Andra J et al (2004) Biophysical characterization of endotoxin inactivation by NK-2, an antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 48(5):1593–1599PubMedPubMedCentralCrossRefGoogle Scholar
  12. Andra J et al (2011) Multiple peptide resistance factor (MprF)-mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. J Biol Chem 286(21):18692–18700PubMedPubMedCentralCrossRefGoogle Scholar
  13. Anes J et al (2015) The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 6:14CrossRefGoogle Scholar
  14. Arendt W et al (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194(6):1401–1416PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ashby M, Petkova A, Hilpert K (2014) Cationic antimicrobial peptides as potential new therapeutic agents in neonates and children: a review. Curr Opin Infect Dis 27(3):258–267PubMedCrossRefGoogle Scholar
  16. Avila-Calderón E et al (2015) Roles of bacterial membrane vesicles. Arch Microbiol 197(1):1–10PubMedCrossRefGoogle Scholar
  17. Bader MW et al (2003) Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50(1):219–230PubMedCrossRefGoogle Scholar
  18. Bader MW et al (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122(3):461–472PubMedCrossRefGoogle Scholar
  19. Baker J, Wright SH, Tama F (2012) Simulations of substrate transport in the multidrug transporter EmrD. Proteins Struct Funct Bioinf 80(6):1620–1632CrossRefGoogle Scholar
  20. Balciunas EM et al (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32(1):134–142CrossRefGoogle Scholar
  21. Band VI, Weiss DS (2015) Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel) 4(1):18–41CrossRefGoogle Scholar
  22. Barrett AJ, Rawlings ND, Woessner JF (2012) Handbook of proteolytic enzymes, Elsevier ScienceGoogle Scholar
  23. Bastos MDD, Coelho MLV, Santos OCD (2015) Resistance to bacteriocins produced by Gram-positive bacteria. Microbiol SGM 161:683–700CrossRefGoogle Scholar
  24. Batabyal B, Kundu GKR, Biswas S (2012) Methicillin-resistant Staphylococcus aureus: a brief review. International Research Journal of Biological Sciences 1:65–71Google Scholar
  25. Bavro VN, Marshall RL, Symmons MF (2015) Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 6Google Scholar
  26. Bayer AS et al (1998) In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob Agents Chemother 42(12):3169–3172PubMedPubMedCentralGoogle Scholar
  27. Bayer AS et al (2000) In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun 68(6):3548–3553PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bayer AS et al (2006) Low-level resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 in vitro associated with qacA gene carriage is independent of multidrug efflux pump activity. Antimicrob Agents Chemother 50(7):2448–2454PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bayer AS, Schneider T, Sahl HG (2013) Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 1277:139–158PubMedPubMedCentralCrossRefGoogle Scholar
  30. Belden WJ, Miller SI (1994) Further characterization of the PhoP regulon—identification of new PhoP-activated virulence loci. Infect Immun 62(11):5095–5101PubMedPubMedCentralGoogle Scholar
  31. Bellm L, Lehrer RI, Ganz T (2000) Protegrins: new antibiotics of mammalian origin. Expert Opin Investig Drugs 9(8):1731–1742PubMedCrossRefGoogle Scholar
  32. Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37(1):67–80PubMedCrossRefGoogle Scholar
  33. Bentley R (2009) Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). J Ind Microbiol Biotechnol 36(6):775–786PubMedCrossRefGoogle Scholar
  34. Bhardwaj AK, Mohanty P (2012) Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent Pat Anti-Infect Drug Discov 7(1):73–89CrossRefGoogle Scholar
  35. Bialvaei AZ, Kafil HS (2015) Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin 31(4):707–721PubMedCrossRefGoogle Scholar
  36. Bisno AL, Brito MO, Collins CM (2003) Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3(4):191–200PubMedCrossRefGoogle Scholar
  37. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58CrossRefGoogle Scholar
  38. Blair JMA, Richmond GE, Piddock LJV (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiology 9(10):1165–1177PubMedCrossRefGoogle Scholar
  39. Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333(1):1–9PubMedCrossRefGoogle Scholar
  40. Brannon JR et al (2013) Role of uropathogenic Escherichia coli OmpT in the resistance against human cathelicidin LL-37. FEMS Microbiol Lett 345(1):64–71PubMedCrossRefGoogle Scholar
  41. Breidenstein EBM, de la Fuente-Nunez C, Hancock REW (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426PubMedCrossRefGoogle Scholar
  42. Brincat JP et al (2011) Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. J Med Chem 54(1):354–365PubMedCrossRefGoogle Scholar
  43. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: Is immunity the second function of chromatin? J Cell Biol 198(5):773–783PubMedPubMedCentralCrossRefGoogle Scholar
  44. Brogden KA (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250PubMedCrossRefGoogle Scholar
  45. Brown MH, Skurray RA (2002) Structure, function and regulation of the staphylococcal multidrug efflux protein QacA. In: Paulsen IT, Lewis K (eds) JMMB symposium series, microbial multidrug efflux, vol 4, pp 49–66Google Scholar
  46. Carlisle MD, Srikantha RN, Brogden KA (2009) Degradation of human alpha- and beta-defensins by culture supernatants of Porphyromonas gingivalis strain 381. J Innate Immun 1(2):118–122PubMedCrossRefGoogle Scholar
  47. Chen YC et al (2004) A K + yptake protein, TrkA, is required for serum, protamine, and polymyxin B resistance in Vibrio vulnificus. Infect Immun 72(2):629–636PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cheng H-Y, Chen Y-F, Peng H-L (2010) Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J Biomed Sci 17Google Scholar
  49. Cipolla L et al (2011) New targets for antibacterial design: Kdo biosynthesis and LPS machinery transport to the cell surface. Curr Med Chem 18(6):830–852PubMedCrossRefGoogle Scholar
  50. (2014) Pexiganan versus placebo control for the treatment of mild infections of diabetic foot ulcers (OneStep-1). Accessed 6 April 15.
  51. Coetzer THT, Goldring JPD, Huson LEJ (2008) Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 90(2):336–344PubMedCrossRefGoogle Scholar
  52. Cole ST (2014) Who will develop new antibacterial agents? Philos Trans R Soc B Biol Sci 369(1645):7CrossRefGoogle Scholar
  53. Cole JN et al (2010) M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. MBio 1(4)Google Scholar
  54. Collu F, Cascella M (2013) Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem 13(24):3165–3183PubMedCrossRefGoogle Scholar
  55. Cooper PR, Palmer LJ, Chapple ILC (2000) Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontology 2000, 2013. 63(1):165–197Google Scholar
  56. Costa SS et al (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7:59–71PubMedPubMedCentralCrossRefGoogle Scholar
  57. Costa TRD et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Micro 13(6):343–359CrossRefGoogle Scholar
  58. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105PubMedCrossRefGoogle Scholar
  59. Cruz J et al (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21(20):2299–2321PubMedCrossRefGoogle Scholar
  60. da Costa JP et al (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99(5):2023–2040PubMedCrossRefGoogle Scholar
  61. Dalebroux ZD, Miller SI (2014) Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 17:106–113PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dalebroux ZD et al (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc Natl Acad Sci USA 111(5):1963–1968PubMedPubMedCentralCrossRefGoogle Scholar
  63. Danne C, Dramsi S (2012) Pili of Gram-positive bacteria: roles in host colonization. Res Microbiol 163(9–10):645–658PubMedCrossRefGoogle Scholar
  64. Davidson AL et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317–364PubMedPubMedCentralCrossRefGoogle Scholar
  65. Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol (Journal canadien des maladies infectieuses et de la microbiologie medicale/AMMI Canada) 17(5):287–90Google Scholar
  66. Delmar JA, Su C-C, Yu EW (2014) Bacterial multidrug efflux transporters. Annu Rev Biophys 43(1):93–117PubMedPubMedCentralCrossRefGoogle Scholar
  67. Dennison SR, Harris F, Phoenix DA (2005) Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion? Protein Pept Lett 12(1):27–29PubMedCrossRefGoogle Scholar
  68. Dennison SR et al (2013) A novel form of bacterial resistance to the action of eukaryotic host defense peptides, the use of a lipid receptor. Biochemistry 52(35):6021–6029PubMedCrossRefGoogle Scholar
  69. Dennison SR et al (2015) Use of the antimicrobial peptide, maximin H5 to protect against Staphylococcus aureus. In: 5th international meeting of antimicrobial peptides 2015. Royal Society for Chemistry, LondonGoogle Scholar
  70. Dennison SR et al (2015) The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochim Biophys Acta (BBA) Biomembr 1848(5):1111–1118CrossRefGoogle Scholar
  71. Destoumieux-Garzón D et al (2014) Resistance to antimicrobial peptides in vibrios. Antibiotics 3(4):540–563CrossRefGoogle Scholar
  72. Devine DA et al (1999) Modulation of antibacterial peptide activity by products of Porphyromonas Gingivalis and Prevotella spp. Microbiol UK 145:965–971CrossRefGoogle Scholar
  73. Dhawan VK, Bayer AS, Yeaman MR (1998) In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect Immun 66(7):3476–3479PubMedPubMedCentralGoogle Scholar
  74. Dobson AJ et al (2013) Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS ONE 8(10):5CrossRefGoogle Scholar
  75. Dobson AJ, Purves J, Rolff J (2014) Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. Evol Appl 7(8):905–912PubMedPubMedCentralCrossRefGoogle Scholar
  76. Dorner F, Lienkamp K (2014) Chapter 5 polymer-based synthetic mimics of antimicrobial peptides (SMAMPs)—a new class of nature-inspired antimicrobial agents with low bacterial resistance formation potential, in polymeric materials with antimicrobial activity: from synthesis to applications. R Soc Chem 97–138Google Scholar
  77. Dorotkiewicz-Jach A et al (2015) Modern therapeutic approaches against Pseudomonas aeruginosa infections. Curr Med Chem 22(14):1642–1664PubMedCrossRefGoogle Scholar
  78. Draper LA et al (2015) Lantibiotic resistance. Microbiol Mol Biol Rev MMBR 79(2):171–191PubMedCrossRefGoogle Scholar
  79. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New YorkGoogle Scholar
  80. Duperthuy M et al (2013) Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9(10):e1003620PubMedPubMedCentralCrossRefGoogle Scholar
  81. Duquesne S et al (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24(4):708–734PubMedCrossRefGoogle Scholar
  82. Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651PubMedCrossRefGoogle Scholar
  83. Elkins CA, Mullis LB (2006) Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J Bacteriol 188(3):1191–1195PubMedPubMedCentralCrossRefGoogle Scholar
  84. Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 17(5):298–305PubMedCrossRefGoogle Scholar
  85. Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80(2):290–299PubMedCrossRefGoogle Scholar
  86. Escaich S (2010) Novel agents to inhibit microbial virulence and pathogenicity. Expert Opin Ther Pat 20(10):1401–1418PubMedCrossRefGoogle Scholar
  87. Eswarappa SM et al (2008) The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 154(2):666–678PubMedCrossRefGoogle Scholar
  88. Evans ML, Chapman MR (2014) Curli biogenesis: Order out of disorder. Biochim Biophys Acta Mol Cell Res 1843(8):1551–1558CrossRefGoogle Scholar
  89. Falord M et al (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 6(7):e21323PubMedPubMedCentralCrossRefGoogle Scholar
  90. Falord M et al (2012) GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 56(2):1047–1058PubMedPubMedCentralCrossRefGoogle Scholar
  91. Fernández L, Hancock REW (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25(4):661–681PubMedPubMedCentralCrossRefGoogle Scholar
  92. Fernández-Fuentes MA et al (2014) Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Int J Food Microbiol 172:49–56PubMedCrossRefGoogle Scholar
  93. Fernando D, Kumar A (2013) Resistance-nodulation-division multidrug efflux pumps in Gram-negative bacteria: role in virulence. Antibiotics 2(1):163PubMedPubMedCentralCrossRefGoogle Scholar
  94. Fernie-King BA, Seilly DJ, Lachmann PJ (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111(4):444–452PubMedPubMedCentralCrossRefGoogle Scholar
  95. Fernie-King BA et al (2007) Streptococcal DRS (distantly related to SIC) and SIC inhibit antimicrobial peptides, components of mucosal innate immunity: a comparison of their activities. Microbes Infect 9(3):300–307PubMedCrossRefGoogle Scholar
  96. Ferreira M, Costa J, Reis-Henriques MA (2014) ABC transporters in fish species: a review. Front Physiol 5Google Scholar
  97. Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta (BBA) Bioenerg 1807(2):167–188CrossRefGoogle Scholar
  98. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31(5):379–382PubMedCrossRefGoogle Scholar
  99. Franco OL, Parachin NS (2014) New edge of antibiotic development: antimicrobial peptides and corresponding resistance. Frontiers E-booksGoogle Scholar
  100. Frees D, Brøndsted L, Ingmer H (2013) Bacterial proteases and virulence. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Netherlands, pp 161–192Google Scholar
  101. Frick I-M et al (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278(19):16561–16566PubMedCrossRefGoogle Scholar
  102. Frick I-M et al (2008) Identification of a novel protein promoting the colonization and survival of Finegoldia magna, a bacterial commensal and opportunistic pathogen. Mol Microbiol 70(3):695–708PubMedPubMedCentralCrossRefGoogle Scholar
  103. Frick I-M et al (2011a) Antibacterial activity of the contact and complement systems is blocked by SIC, a protein secreted by Streptococcus pyogenes. J Biol Chem 286(2):1331–1340PubMedPubMedCentralCrossRefGoogle Scholar
  104. Frick I-M et al (2011b) Constitutive and inflammation-dependent antimicrobial peptides produced by epithelium are differentially processed and inactivated by the commensal finegoldia magna and the pathogen Streptococcus pyogenes. J Immunol 187(8):4300–4309PubMedCrossRefGoogle Scholar
  105. Fronzes R, Remaut H, Waksman G (2008) Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. The EMBO J 27(17):2271–2280PubMedCrossRefGoogle Scholar
  106. Gabrielli L et al (2012) Recent approaches to novel antibacterials designed after LPS structure and biochemistry. Curr Drug Targets 13(11):1458–1471PubMedCrossRefGoogle Scholar
  107. Ganz T et al (1985) Defensins—natural peptide antibiotics of human-neutrophils. J Clin Invest 76(4):1427–1435PubMedPubMedCentralCrossRefGoogle Scholar
  108. Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria—phylogeny, function and regulation. Mol Microbiol 86(6):1295–1317PubMedCrossRefGoogle Scholar
  109. Gela A et al (2014) Midkine in host defence. Br J Pharmacol 171(4):859–869PubMedPubMedCentralCrossRefGoogle Scholar
  110. German N, Wei P, Kaatz GW, Kerns RJ (2008) Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur J Med Chem. 43(11):2453–63Google Scholar
  111. Ghosh P (2011) The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. In: Advances in Experimental Medicine and Biology, pp 197–211Google Scholar
  112. Goldberg K et al (2013) Sensitization of gram-negative bacteria by targeting the membrane potential. Faseb Journal 27(9):3818–3826PubMedCrossRefGoogle Scholar
  113. Gomes F, Teixeira P, Oliveira R (2014) Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling 30(2):131–141PubMedCrossRefGoogle Scholar
  114. Goyita M, Kandler JL, Shafer WM (2013) Mechanisms and significance of bacterial resistance to human cationic antimicrobial peptides. In: Hiemstra PS, Zaat SAJ (eds) Antimicrobial peptides and innate immunity. Springer, Basel, pp 219–255Google Scholar
  115. Grenier D, La VD (2011) Proteases of Porphyromonas gingivalis as important virulence factors in periodontal disease and potential targets for plant-derived compounds: a review article. Curr Drug Targets 12(3):322–331PubMedCrossRefGoogle Scholar
  116. Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183(6):1835–1842PubMedPubMedCentralCrossRefGoogle Scholar
  117. Gruenheid S, Le Moual H (2012) Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Lett 330(2):81–89PubMedCrossRefGoogle Scholar
  118. Gudhka RK, Neilan BA, Burns BP (2015) Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analyses. Archaea (Vancouver, B.C.) 2015:241608–241608Google Scholar
  119. Guilhelmelli F et al (2013) Antimicrobial development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4Google Scholar
  120. Guina T et al (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182(14):4077–4086PubMedPubMedCentralCrossRefGoogle Scholar
  121. Gunn JS, Miller SI (1996) PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178(23):6857–6864PubMedPubMedCentralGoogle Scholar
  122. Guo L et al (1998) Lipid a acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95(2):189–198PubMedCrossRefGoogle Scholar
  123. Guo Y, Nguyen K-A, Potempa J (2000) Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontology 2010(54):15–44Google Scholar
  124. Gupta S et al (2011) DbMDR: a relational database for multidrug resistance genes as potential drug targets. Chem Biol Drug Des 78(4):734–738PubMedCrossRefGoogle Scholar
  125. Gupta V et al (2015) Detection of Yersinia enterocolitica in food: an overview. Eur J Clin Microbiol Infect Dis 34(4):641–650PubMedCrossRefGoogle Scholar
  126. Gutner M et al (2009) Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis. Infect Immun 77(12):5558–5563PubMedPubMedCentralCrossRefGoogle Scholar
  127. Habets MGJL, Brockhurst MA (2012) Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 8(3):416–418PubMedPubMedCentralCrossRefGoogle Scholar
  128. Habets M, Rozen DE, Brockhurst MA (2012) Variation in Streptococcus pneumoniae susceptibility to human antimicrobial peptides may mediate intraspecific competition. Proc R Soc B Biol Sci 279(1743):3803–3811CrossRefGoogle Scholar
  129. Haiko J et al (2009) Invited review: breaking barriers—attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 15(2):67–80PubMedCrossRefGoogle Scholar
  130. Halverson TWR et al (2015) DNA is an antimicrobial component of Neutrophil Extracellular Traps. Plos Pathog 11(1)Google Scholar
  131. Handzlik J, Matys A, Kieć-Kononowicz K (2013) Recent advances in Multi-Drug Resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2(1):28Google Scholar
  132. Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606PubMedCrossRefGoogle Scholar
  133. Harris F, Dennison S, Phoenix D (2011) Anionic antimicrobial peptides from eukaryotic organisms and their mechanisms of action. Curr Chem Biol 5(2):142–153CrossRefGoogle Scholar
  134. Harris JB et al (2012) Cholera. Lancet 379(9835):2466–2476PubMedPubMedCentralCrossRefGoogle Scholar
  135. Harris F et al (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234PubMedCrossRefGoogle Scholar
  136. Hassan M et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736PubMedCrossRefGoogle Scholar
  137. Hassan KA et al (2013) Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci USA 110(50):20254–20259PubMedPubMedCentralCrossRefGoogle Scholar
  138. Hassan KA et al (2015a) Homologs of the Acinetobacter baumannii aceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6(1)Google Scholar
  139. Hassan KA et al (2015b) An ace up their sleeve: a transcriptomic approach exposes the Acel efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front Microbiol 6Google Scholar
  140. Hawkey PM (2015) Multidrug-resistant Gram-negative bacteria: a product of globalization. J Hosp Infect 89(4):241–247PubMedCrossRefGoogle Scholar
  141. Heimlich D, Harrison A, Mason K (2014) Host antimicrobial peptides in bacterial homeostasis and pathogenesis of disease. Antibiotics 3(4):645PubMedPubMedCentralCrossRefGoogle Scholar
  142. Henriques ST, Melo MN, Castanho MARB (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  143. Hinchliffe P et al (2013) Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 67(67):221–242PubMedCrossRefGoogle Scholar
  144. Hoang KV, Wang Y, Lin J (2012) Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide. Front Cell Infect Microbiol 2:32PubMedPubMedCentralCrossRefGoogle Scholar
  145. Holler JG et al (2012) Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J Antimicrob Chemother 67(5):1138–1144PubMedCrossRefGoogle Scholar
  146. Hritonenko V, Stathopoulos C (2007) Omptin proteins: an expanding family of outer membrane proteases in Gram-negative Enterobacteriaceae. Mol Membr Biol 24(5–6):395–406PubMedCrossRefGoogle Scholar
  147. Huang YW et al (2013) Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J Antimicrob Chemother 68(11):2498–2505PubMedCrossRefGoogle Scholar
  148. Hui C-Y et al (2010) Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol 54(8):452–459PubMedCrossRefGoogle Scholar
  149. Hultmark D et al (1980) Insect immunity - purification and properties of 3 inducible bactericidal proteins from hemolymph of immunized pupae of hyalophora-cecropia. Eur J Biochem 106(1):7–16PubMedCrossRefGoogle Scholar
  150. Hwang B-Y et al (2007) Substrate specificity of the Escherichia coli outer membrane protease OmpP. J Bacteriol 189(2):522–530PubMedPubMedCentralCrossRefGoogle Scholar
  151. Islam D et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185PubMedCrossRefGoogle Scholar
  152. Jardetzky O (1966) Simple allosteric model for membrane pumps [27]. Nature 211(5052):969–970PubMedCrossRefGoogle Scholar
  153. Jerse AE et al (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71(10):5576–5582PubMedPubMedCentralCrossRefGoogle Scholar
  154. Johansson J et al (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724PubMedCrossRefGoogle Scholar
  155. Johansson L et al (2008) Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 76(8):3399–3404PubMedPubMedCentralCrossRefGoogle Scholar
  156. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  157. Joo H-S, Otto M (2015) Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochim Biophys Acta (BBA) BiomembrGoogle Scholar
  158. Kai-Larsen Y et al (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6(7):e1001010PubMedPubMedCentralCrossRefGoogle Scholar
  159. Kang S-J et al (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12(12):1477–1486PubMedCrossRefGoogle Scholar
  160. Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 15(6):375–387PubMedCrossRefGoogle Scholar
  161. Kariuki S et al (2015) Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33(Supplement 3):C21–C29PubMedCrossRefGoogle Scholar
  162. Kathawala RJ et al (2015) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updates 18:1–17CrossRefGoogle Scholar
  163. Katz ML et al (2006) Where have all the antibiotic patents gone? Nat Biotechnol 24(12):1529–1531PubMedCrossRefGoogle Scholar
  164. Katzif S et al (2005) CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. J Bacteriol 187(23):8181–8184PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kaur G et al (2011) Nisin and class IIa bacteriocin resistance among listeria and other foodborne pathogens and spoilage bacteria. Microbial Drug Resist 17(2):197–205CrossRefGoogle Scholar
  166. Keo T et al (2011) Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence 2(1):30–40PubMedPubMedCentralCrossRefGoogle Scholar
  167. Kilelee E et al (2010) Lysyl-phosphatidylglycerol attenuates membrane perturbation rather than surface association of the cationic antimicrobial peptide 6 W-RP-1 in a model membrane system: implications for daptomycin resistance. Antimicrob Agents Chemother 54(10):4476–4479PubMedPubMedCentralCrossRefGoogle Scholar
  168. Kindrachuk J, Napper S (2008) Host and pathogen sensory systems as targets for therapeutic intervention, VDM PublishingGoogle Scholar
  169. Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35PubMedPubMedCentralCrossRefGoogle Scholar
  170. Klein JS, Lewinson O (2011) Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 3(11):1098–1108PubMedCrossRefGoogle Scholar
  171. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183(19):5639–5644PubMedPubMedCentralCrossRefGoogle Scholar
  172. Kocianova S et al (2005) Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115(3):688–694PubMedPubMedCentralCrossRefGoogle Scholar
  173. Köck K, Brouwer KLR (2012) A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 92(5):599–612PubMedPubMedCentralCrossRefGoogle Scholar
  174. Koo SP et al (1996) Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 64(3):1070–1074PubMedPubMedCentralGoogle Scholar
  175. Koprivnjak T, Peschel A (2011) Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 68(13):2243–2254PubMedCrossRefGoogle Scholar
  176. Kukkonen M, Korhonen TK (2004) The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol 294(1):7–14PubMedCrossRefGoogle Scholar
  177. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57(10):1486–1513PubMedCrossRefGoogle Scholar
  178. Kumar S et al (2013) Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: a review. In: Pandali S (ed) Recent research developments in antimicrobial agents & chemotherapy. Research Signpost Inc., Kerala, India, pp 1–21Google Scholar
  179. Kupferwasser LI et al (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43(10):2395–2399PubMedPubMedCentralGoogle Scholar
  180. Kupferwasser LI et al (2002) In vitro susceptibility to thrombin-induced platelet microbicidal protein is associated with reduced disease progression and complication rates in experimental Staphylococcus aureus endocarditis: microbiological, histopathologic, and echocardiographic analyses. Circulation 105(6):746–752PubMedCrossRefGoogle Scholar
  181. Lai R et al (2002) An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun 295(4):796–799PubMedCrossRefGoogle Scholar
  182. LaRock CN, Nizet V (2015) Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys ActaGoogle Scholar
  183. Last NB, Schlamadinger DE, Miranker AD (2013) A common landscape for membrane-active peptides. Protein Sci 22(7):870–882PubMedPubMedCentralCrossRefGoogle Scholar
  184. Lauth X et al (2009) M1 protein allows group a streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun 1(3):202–214PubMedPubMedCentralCrossRefGoogle Scholar
  185. Law CJ, Maloney PC, Wang D-N (2008) Ins and outs of major facilitator superfamily, antiporters. Annu Rev Microbiol 62:289–305Google Scholar
  186. Lee CR et al (2013) Lipid a biosynthesis of multidrug-resistant pathogens—a novel drug target. Curr Pharm Des 19(36):6534–6550PubMedCrossRefGoogle Scholar
  187. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefGoogle Scholar
  188. Lewis K (2000) Translocases: a bacterial tunnel for drugs and proteins. Curr Biol 10(18):R678–R681PubMedCrossRefGoogle Scholar
  189. Lewis DA (2003) Chancroid: clinical manifestations, diagnosis, and management. Sex Transm Infect 79(1):68–71PubMedPubMedCentralCrossRefGoogle Scholar
  190. Lewis VG, Ween MP, McDevitt CA (2012) The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma 249(4):919–942PubMedCrossRefGoogle Scholar
  191. Li X-Z, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64(2):159–204PubMedCrossRefGoogle Scholar
  192. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69(12):1555–1623PubMedPubMedCentralCrossRefGoogle Scholar
  193. Li M et al (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147PubMedCrossRefGoogle Scholar
  194. Li M et al (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104(22):9469–9474PubMedPubMedCentralCrossRefGoogle Scholar
  195. Li Y et al (2012) LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci 109(22):8716–8721PubMedPubMedCentralCrossRefGoogle Scholar
  196. Lima IFN, Havt A, Lima AAM (2015) Update on molecular epidemiology of Shigella infection. Curr Opin Gastroenterol 31(1):30–37PubMedCrossRefGoogle Scholar
  197. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4(3):325–331PubMedCrossRefGoogle Scholar
  198. Lin QY et al (2014a) Serratia marcescens arn, a PhoP-regulated locus necessary for polymyxin B resistance. Antimicrob Agents Chemother 58(9):5181–5190PubMedPubMedCentralCrossRefGoogle Scholar
  199. Lin YT et al (2014b) MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother 69(12):3221–3226PubMedCrossRefGoogle Scholar
  200. Liu R et al (2011) There are abundant antimicrobial peptides in brains of two kinds of bombina toads. J Proteome Res 10(4):1806–1815PubMedCrossRefGoogle Scholar
  201. Llobet E et al (2011) Analysis of the networks controlling the antimicrobial-peptide-dependent induction of Klebsiella pneumoniae virulence factors. Infect Immun 79(9):3718–3732PubMedPubMedCentralCrossRefGoogle Scholar
  202. Lohner K, Prenner EJ (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta (BBA) 1462(1–2):141–156CrossRefGoogle Scholar
  203. Lopez-Solanilla E, Garcia-Olmedo F, Rodriguez-Palenzuela P (1998) Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell 10(6):917–924PubMedPubMedCentralGoogle Scholar
  204. Lösel DM (1900) Lipids in the structure and function of fungal membranes. In: Kuhn P et al (ed) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp 119–133Google Scholar
  205. Loutet SA et al (2011) A two-tier model of polymyxin B resistance in Burkholderia cenocepacia. Environ Microbiol Rep 3(2):278–285PubMedCrossRefGoogle Scholar
  206. Luckenbach T, Fischer S, Sturm A (2014) Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 165:28–52PubMedCrossRefGoogle Scholar
  207. Lupp C, Hancock RW, Ruby E (2002) The Vibrio fischeri sapABCDF locus is required for normal growth, both in culture and in symbiosis. Arch Microbiol 179(1):57–65PubMedCrossRefGoogle Scholar
  208. Lycklama ANJA, Driessen AJ (2012) The bacterial sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 367(1592):1016–1028CrossRefGoogle Scholar
  209. Madej MG (2014) Function, structure, and evolution of the major facilitator superfamily: the LacY manifesto. Adv Biol 2014:20 Article ID 523591. doi:  10.1155/2014/523591
  210. Maisetta G et al (2011) Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide’s antibacterial activity in vitro. Peptides 32(5):1073–1077PubMedCrossRefGoogle Scholar
  211. Mandal SM et al (2014) Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol 5Google Scholar
  212. Manning AJ (2013) Outer membrane vesicles: a new paradigm of bacterial innate immunity. PhD thesis, Department of biochemistry, Duke University, Durham, USAGoogle Scholar
  213. Manning AJ, Kuehn MJ (2011) Contribution of bacterial outer membrane vesicles to innate bacterial defense. Bmc Microbiol 11Google Scholar
  214. Manning AJ, Kuehn MJ (2013) Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol 23(1–2):131–141PubMedPubMedCentralCrossRefGoogle Scholar
  215. Marcos JF, Gandia M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discov 4(6):659–671PubMedCrossRefGoogle Scholar
  216. Martinez JL et al (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33(2):430–449PubMedCrossRefGoogle Scholar
  217. Mason KM, Munson RS, Bakaletz LO (2005) A Mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a Chinchilla Model of Otitis Media. Infect Immun 73(1):599–608PubMedPubMedCentralCrossRefGoogle Scholar
  218. Mason KM et al (2006) The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 62(5):1357–1372PubMedCrossRefGoogle Scholar
  219. Mason KM et al (2011) Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on sap transporter function. J Bacteriol 193(10):2527–2535PubMedPubMedCentralCrossRefGoogle Scholar
  220. Masureel M et al (2014) Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem Biol 10(2):149–155PubMedPubMedCentralCrossRefGoogle Scholar
  221. Matsuo M et al (2011) Growth-phase dependence of susceptibility to antimicrobial peptides in Staphylococcus aureus. Microbiology-Sgm 157:1786–1797CrossRefGoogle Scholar
  222. Mattiuzzo M et al (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66(1):151–163PubMedCrossRefGoogle Scholar
  223. Mattiuzzo M et al (2014) Proteolytic activity of Escherichia coli oligopeptidase B against proline-rich antimicrobial peptides. J Microbiol Biotechnol 24(2):160–167PubMedCrossRefGoogle Scholar
  224. May JJ et al (2005) Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J 272(12):2993–3003PubMedCrossRefGoogle Scholar
  225. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63(2):545–558PubMedPubMedCentralCrossRefGoogle Scholar
  226. McPhee JB et al (2009) Antibiotic resistance due to reduced uptake. In: Mayers D (ed) Antimicrobial drug resistance, Humana Press, pp 97–110Google Scholar
  227. McPhee JB et al (2014) Host defense peptide resistance contributes to colonization and maximal intestinal pathology by crohn’s disease-associated adherent-invasive Escherichia coli. Infect Immun 82(8):3383–3393PubMedPubMedCentralCrossRefGoogle Scholar
  228. Mehla J, Sood SK (2011) Substantiation in Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay. Appl Environ Microbiol 77(3):786–793PubMedPubMedCentralCrossRefGoogle Scholar
  229. Mehla J, Sood SK (2013) Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model. Appl Microbiol Biotechnol 97(10):4377–4384PubMedCrossRefGoogle Scholar
  230. Menozzi FD et al (2002) Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol Microbiol 43(6):1379–1386PubMedCrossRefGoogle Scholar
  231. Miller DS (2015) Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 125:43–70PubMedCrossRefGoogle Scholar
  232. Miller SI et al (1990) Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 58(11):3706–3710PubMedPubMedCentralGoogle Scholar
  233. Miller AK et al (2011) PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 55(12):5761–5769PubMedPubMedCentralCrossRefGoogle Scholar
  234. Mills SD, Dougherty TJ (2012) Cell-based screening in antibacterial discovery. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development, vols 1 and 2. Springer, New York, pp 901–929Google Scholar
  235. Misaka S, Muller F, Fromm MF (2013) Clinical relevance of drug efflux pumps in the gut. Curr Opin Pharmacol 13(6):847–852PubMedCrossRefGoogle Scholar
  236. Mishra A, Jha B (2013) Microbial exopolysaccharides. In: Rosenberg E et al (ed) The Prokaryotes. Springer, Berlin, pp 179–192Google Scholar
  237. Mishra NN et al (2011) Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55(2):526–531PubMedPubMedCentralCrossRefGoogle Scholar
  238. Mishra NN et al (2012) Differential adaptations of methicillin-resistant Staphylococcus aureus to serial in vitro passage in daptomycin: evolution of daptomycin resistance and role of membrane carotenoid content and fluidity. Int J Microbiol 2012:6CrossRefGoogle Scholar
  239. Mohamed Mustafa MS et al (2012) Assessment of substrate inhibition of bacterial oligopeptidase B. Biol Pharm Bull 35(11):2010–6Google Scholar
  240. Mohammad H, Thangamani S, Seleem MN (2015) Antimicrobial peptides and peptidomimetics—potent therapeutic allies for staphylococcal infections. Curr Pharm Des 21(16):2073–2088PubMedCrossRefGoogle Scholar
  241. Morace G, Perdoni F, Borghi E (2014) Antifungal drug resistance in Candida species. J Global Antimicrob Resist 2(4):254–259CrossRefGoogle Scholar
  242. Morita Y et al (2000) NorM of vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182(23):6694–6697PubMedPubMedCentralCrossRefGoogle Scholar
  243. Mount KLB et al (2010) Haemophilus ducreyi SapA contributes to cathelicidin resistance and virulence in humans. Infect Immun 78(3):1176–1184PubMedPubMedCentralCrossRefGoogle Scholar
  244. Murakami S (2008) Multidrug efflux transporter, AcrB—the pumping mechanism. Curr Opin Struct Biol 18(4):459–465PubMedCrossRefGoogle Scholar
  245. Murphy EC, Frick IM (2013) Gram-positive anaerobic cocci—commensals and opportunistic pathogens. FEMS Microbiol Rev 37(4):520–553PubMedCrossRefGoogle Scholar
  246. Murphy EC et al (2014) Identification of molecular mechanisms used by Finegoldia magna to penetrate and colonize human skin. Mol Microbiol 94(2):403–417PubMedPubMedCentralCrossRefGoogle Scholar
  247. Mysak J et al (2014) Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014:8CrossRefGoogle Scholar
  248. Muzamal U et al (2014) Diversity of two-component systems: insights into the signal transduction mechanism by the Staphylococcus aureus two-component system GraSR [version 1; referees: 2 approved with reservations], vol 3Google Scholar
  249. Naito M et al (2010) Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol 192(8):2182–2192PubMedPubMedCentralCrossRefGoogle Scholar
  250. Nakamura T et al (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263(32):16709–16713PubMedGoogle Scholar
  251. Nakka S, Qi M, Zhao Y (2010) The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 165(8):665–673PubMedCrossRefGoogle Scholar
  252. Nawrocki KL, Crispell EK, McBride SM (2014) Antimicrobial peptide resistance mechanisms of Gram-positive bacteria. Antibiotics (Basel) 3(4):461–492CrossRefGoogle Scholar
  253. Needham BD, Trent MS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11(7):467–481PubMedCrossRefGoogle Scholar
  254. Nelson DC, Garbe J, Collin M (2011) Cysteine proteinase SpeB from Streptococcus pyogenes—a potent modifier of immunologically important host and bacterial proteins. Biol Chem 392(12):1077–1088PubMedCrossRefGoogle Scholar
  255. Neumann A et al (2014a) Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases. J Innate Immun 6(6):860–868PubMedPubMedCentralCrossRefGoogle Scholar
  256. Neumann A et al (2014b) The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 464:3–11PubMedCrossRefGoogle Scholar
  257. Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276(22):6483–6496PubMedCrossRefGoogle Scholar
  258. Nikaido H, Pagès J-M (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36(2):340–363PubMedPubMedCentralCrossRefGoogle Scholar
  259. Nikaido H, Zgurskaya HI (2001) AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 3(2):215–218PubMedGoogle Scholar
  260. Nishie M, Nagao J, Sonomoto K (2012) Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci 17(1):1–16PubMedCrossRefGoogle Scholar
  261. Norsworthy AN, Visick KL (2013) Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front Microbiol 4Google Scholar
  262. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015PubMedPubMedCentralCrossRefGoogle Scholar
  263. Nyberg P, Rasmussen M, Bjorck L (2004) alpha2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem 279(51):52820–52823PubMedCrossRefGoogle Scholar
  264. Olaitan AO, Morand S, Rolain J-M (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643Google Scholar
  265. Oliver JD (2015) The Biology of Vibrio vulnificus. Microbiol Spectr 3(3)Google Scholar
  266. Olsen I, Amano A (2015) Outer membrane vesicles—offensive weapons or good Samaritans? 7Google Scholar
  267. Opperman TJ, Nguyen S (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6Google Scholar
  268. Ormeno-Orrillo E et al (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). Bmc Genomics 13Google Scholar
  269. Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. In: Shafer W (ed) Antimicrobial peptides and human disease. Springer, Berlin, pp 251–258Google Scholar
  270. Otto M (2009) Bacterial sensing of antimicrobial peptides. In: Collin M, Schuch R (ed) Bacterial sensing and signaling, pp 136–149Google Scholar
  271. Padilla E et al (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54(1):177–183PubMedPubMedCentralCrossRefGoogle Scholar
  272. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496PubMedGoogle Scholar
  273. Park PW et al (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 275(5):3057–3064PubMedCrossRefGoogle Scholar
  274. Park PW et al (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411(6833):98–102PubMedCrossRefGoogle Scholar
  275. Parra-Lopez C, Baer MT, Groisman EA (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. The EMBO Journal 12(11):4053–4062PubMedPubMedCentralGoogle Scholar
  276. Parra-Lopez C et al (1994) A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. The EMBO J 13(17):3964–3972PubMedGoogle Scholar
  277. Paulsen IT (2003) Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 6(5):446–451PubMedCrossRefGoogle Scholar
  278. Pelz A et al (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280(37):32493–32498PubMedCrossRefGoogle Scholar
  279. Pence MA et al (2010) Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 group A Streptococcus. J Innate Immun 2(6):587–595PubMedPubMedCentralCrossRefGoogle Scholar
  280. Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc R Soc B Biol Sci 273(1583):251–256CrossRefGoogle Scholar
  281. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Micro 4(7):529–536CrossRefGoogle Scholar
  282. Phoenix DA, Dennison SR, Harris F (2013a) Antimicrobial peptides: their history, evolution, and functional promiscuity. In Antimicrobial Peptides, Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–37Google Scholar
  283. Phoenix DA, Dennison SR, Harris F (2013b) Cationic antimicrobial peptides, in antimicrobial peptides. Wiley-VCH Verlag GmbH & Co. KGaA, pp 39–81Google Scholar
  284. Phoenix DA, Dennison SR, Harris F (2013c) Anionic antimicrobial peptides, in antimicrobial peptides. Wiley-VCH Verlag GmbH & Co. KGaA, pp 83–113Google Scholar
  285. Phoenix DA, Dennison SR, Harris F (2013d) Models for the membrane interactions of antimicrobial peptides, in antimicrobial peptides. Wiley-VCH Verlag GmbH & Co. KGaA, pp 145–180Google Scholar
  286. Phoenix DA, Dennison SR, Harris F (2013e) Graphical techniques to visualize the amphiphilic structures of antimicrobial peptides. In: Antimicrobial peptides. Wiley-VCH Verlag GmbH & Co. KGaA, pp 115–144Google Scholar
  287. Phoenix DA, Harris F, Dennison SR (2014) Novel antimicrobial agents and strategies. Wiley, WeinheimGoogle Scholar
  288. Phoenix DA et al (2015) The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides. Prog Lipid Res 59:26–37PubMedCrossRefGoogle Scholar
  289. Piddock LJV (2006a) Multidrug-resistance efflux pumps? not just for resistance. Nat Rev Micro 4(8):629–636CrossRefGoogle Scholar
  290. Piddock LJV (2006b) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19(2):382–402PubMedPubMedCentralCrossRefGoogle Scholar
  291. Poelarends GJ, Mazurkiewicz P, Konings WN (2002) Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta (BBA) Bioenerg 1555(1–3):1–7CrossRefGoogle Scholar
  292. Poole K (2000) Efflux-mediated resistance to fluoroquinolones in Gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 44(10):2595–2599PubMedPubMedCentralCrossRefGoogle Scholar
  293. Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbe 3(4):179–185Google Scholar
  294. Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother. doi: 10.1093/jac/dks196
  295. Port GC et al (2014) Streptococcus pyogenes polymyxin B-resistant mutants display enhanced exPortal integrity. J Bacteriol 196(14):2563–2577PubMedPubMedCentralCrossRefGoogle Scholar
  296. Pranting M et al (2008) Mechanism and fitness costs of PR-39 resistance in salmonella enterica serovar typhimurium LT2. Antimicrob Agents Chemother 52(8):2734–2741PubMedPubMedCentralCrossRefGoogle Scholar
  297. Prasad R, Rawal MK (2014) Efflux pump proteins in ant fungal resistance. Front Pharmacol 5:202. doi: 10.3389/fphar.2014.00202
  298. Pringle P (2013) Experiment eleven: deceit and betrayal in the discovery of the cure for tuberculosis. Bloomsbury Publishing PLC, LondonGoogle Scholar
  299. Proft T, Baker EN (2009) Pili in gram-negative and Gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635PubMedCrossRefGoogle Scholar
  300. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672–692Google Scholar
  301. Radecka I, Martin C, Hill D (2014) The problem of microbial drug resistance, in novel antimicrobial agents and strategies. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–16Google Scholar
  302. Radestock S, Forrest LR (2011) The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 407(5):698–715PubMedCrossRefGoogle Scholar
  303. Rasmussen M, Bjorck L (2002) Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol Microbiol 43(3):537–544PubMedCrossRefGoogle Scholar
  304. Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic Press, LondonGoogle Scholar
  305. Reddy VS et al (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035PubMedPubMedCentralCrossRefGoogle Scholar
  306. Reverchon S, Nasser W (2013) Dickeya ecology, environment sensing and regulation of virulence programme. Environ Microbiol Rep 5(5):622–636PubMedGoogle Scholar
  307. Rieg S et al (2009) Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Agents 33(2):174–176PubMedCrossRefGoogle Scholar
  308. Rodas PI, Contreras I, Mora GC (2010) Salmonella enterica serovar Typhi has a 4.1 kb genetic island inserted within the sapABCDF operon that causes loss of resistance to the antimicrobial peptide protamine. J Antimicrob Chemother 65(8):1624–1630PubMedCrossRefGoogle Scholar
  309. Romalde JL et al (2014) New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 4:413. doi: 10.3389/fmicb.2013.00413
  310. Rosch JW, Caparon MG (2005) The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol 58(4):959–968PubMedCrossRefGoogle Scholar
  311. Rosch JW, Hsu FF, Caparon MG (2007) Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J Bacteriol 189(3):801–806PubMedPubMedCentralCrossRefGoogle Scholar
  312. Roy H (2009) Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life 61(10):940–953PubMedPubMedCentralCrossRefGoogle Scholar
  313. Rubin EJ et al (2015) PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 59(4):2051–2061PubMedPubMedCentralCrossRefGoogle Scholar
  314. Sahin O et al (2015) Campylobacter in poultry: ecology and potential interventions. Avian Dis 59(2):185–200PubMedCrossRefGoogle Scholar
  315. Saidijam M et al (2006) Microbial drug efflux proteins of the major facilitator superfamily. Curr Drug Targets 7(7):793–811PubMedCrossRefGoogle Scholar
  316. Saier Jr MH (1998) Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. In: Poole RK (ed) Advances in microbial physiology, Academic Press, pp 81–136Google Scholar
  317. Santa Maria JP et al (2014) Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. In: Proceedings of the national academy of sciences 111(34):12510–12515Google Scholar
  318. Schaffer W (2006) Antimicrobial peptides and human disease. Springer, BerlinCrossRefGoogle Scholar
  319. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496. doi: 10.3389/fmicb.2015.00496
  320. Schmidt NW, Wong GCL (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17(4):151–163PubMedPubMedCentralCrossRefGoogle Scholar
  321. Schmidtchen A, Frick IM, Bjorck L (2001) Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 39(3):708–713PubMedCrossRefGoogle Scholar
  322. Schmidtchen A et al (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168PubMedCrossRefGoogle Scholar
  323. Selsted ME et al (1983) Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 258(23):4485–4489Google Scholar
  324. Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45(1):150–154PubMedPubMedCentralGoogle Scholar
  325. Selsted ME et al (1985) Primary structures of 6 antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem 260(8):4579–4584PubMedGoogle Scholar
  326. Shafer WM et al (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95(4):1829–1833PubMedPubMedCentralCrossRefGoogle Scholar
  327. Shelton, C.L., et al., Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus. Plos Pathogens, 2011. 7(11)Google Scholar
  328. Shen CJ et al (2010) Proteomic identification of membrane proteins regulating antimicrobial peptide resistance in Vibrio parahaemolyticus. J Appl Microbiol 108(4):1398–1407PubMedCrossRefGoogle Scholar
  329. Shireen T et al (2013) Differential adaptive responses of Staphylococcus aureus to in vitro selection with different antimicrobial peptides. Antimicrob Agents Chemother 57(10):5134–5137PubMedPubMedCentralCrossRefGoogle Scholar
  330. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5), a000414:1-16Google Scholar
  331. Slotboom DJ (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12(2):79–87PubMedCrossRefGoogle Scholar
  332. Smyth D et al (2014) DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Infect Immun 82(6):2337–2344PubMedPubMedCentralCrossRefGoogle Scholar
  333. Sohlenkamp C et al (2007) The lipid lysyl-phosphatidylglycerol Is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. Mol Plant Microbe Interact 20(11):1421–1430PubMedCrossRefGoogle Scholar
  334. Solheim M et al (2007) Transcriptional responses of Enterococcus faecalis V583 to bovine bile and sodium dodecyl sulfate. Appl Environ Microbiol 73(18):5767–5774PubMedPubMedCentralCrossRefGoogle Scholar
  335. Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4(3):223–229PubMedPubMedCentralCrossRefGoogle Scholar
  336. Sperandio B et al (2008) Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205(5):1121–1132PubMedPubMedCentralCrossRefGoogle Scholar
  337. Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40(4):387–397PubMedCrossRefGoogle Scholar
  338. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100PubMedCrossRefGoogle Scholar
  339. Stefani S et al (2015) Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int J Antimicrob Agents 46:278–289Google Scholar
  340. Steiner H et al (1981) Sequence and specificity of 2 anti-bacterial proteins involved in insect immunity. Nature 292(5820):246–248PubMedCrossRefGoogle Scholar
  341. Straley SC, Perry RD (1995) Environmental modulation of gene-expression and pathogenesis in Yersinia. Trends Microbiol 3(8):310–317PubMedCrossRefGoogle Scholar
  342. Strempel N et al (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS ONE 8(12):12CrossRefGoogle Scholar
  343. Stumpe S et al (1998) Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180(15):4002–4006PubMedPubMedCentralGoogle Scholar
  344. Subashchandrabose S et al (2013) Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog 9(12):15CrossRefGoogle Scholar
  345. Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453(2):254–267PubMedCrossRefGoogle Scholar
  346. Szeltner Z, Polgar L (2008) Structure, function and biological relevance of prolyl oligopeptidase. Curr Protein Pept Sci 9(1):96–107PubMedCrossRefGoogle Scholar
  347. Tanaka Y et al (2013) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496(7444):247–251Google Scholar
  348. Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. In: Russell W, Herwald H (ed) Contributions to microbiology, pp 55–66Google Scholar
  349. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51(2):149–177PubMedCrossRefGoogle Scholar
  350. Telford JL et al (2006) Pili in Gram-positive pathogens. Nat Rev Micro 4(7):509–519CrossRefGoogle Scholar
  351. Thanavala Y, Lugade AA (2011) Role of nontypeable Haemophilus influenzae in otitis media and chronic obstructive pulmonary disease. In: Harabuchi Y, Hayashi T, Katada A (eds) Recent advances in tonsils and mucosal barriers of the upper airways, pp 170–175Google Scholar
  352. Thomassin J-L et al (2012a) OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun 80(2):483–492PubMedPubMedCentralCrossRefGoogle Scholar
  353. Thomassin J-L et al (2012b) Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. Gut Microbes 3(6):556–561PubMedPubMedCentralCrossRefGoogle Scholar
  354. Tomaras AP et al (2014) LpxC Inhibitors as New Antibacterial Agents and Tools for Studying Regulation of Lipid A Biosynthesis in Gram-Negative Pathogens. mBio 5(5):e01551-14Google Scholar
  355. Tremolieres F (2010) When the antibiotic miracle turns into a nightmare. MS Med Sci 26(11):925–929Google Scholar
  356. Tzeng Y-L et al (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187(15):5387–5396PubMedPubMedCentralCrossRefGoogle Scholar
  357. Ulett GC et al (2013) Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 16(1):100–107PubMedCrossRefGoogle Scholar
  358. Ullrich M (2009) Bacterial polysaccharides: current innovations and future trends, Caister Academic PressGoogle Scholar
  359. Ulvatne H et al (2002) Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J Antimicrob Chemother 50(4):461–467PubMedCrossRefGoogle Scholar
  360. Van Bambeke F et al (2003) Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 51(5):1055–1065PubMedCrossRefGoogle Scholar
  361. van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124(1):5–8PubMedCrossRefGoogle Scholar
  362. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124PubMedPubMedCentralCrossRefGoogle Scholar
  363. Vanhove AS et al (2015) Outer membrane vesicles are vehicles for the delivery of Vibrio tasmaniensis virulence factors to oyster immune cells. Environ Microbiol 17(4):1152–1165PubMedCrossRefGoogle Scholar
  364. Vasil ML, Darwin AJ (2012) Regulation of bacterial virulence, ASM PressGoogle Scholar
  365. Vega LA, Caparon MG (2012) Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol Microbiol 85(6):1119–1132PubMedPubMedCentralCrossRefGoogle Scholar
  366. Vega LA, Port GC, Caparon MG (2013) An association between peptidoglycan synthesis and organization of the Streptococcus pyogenes ExPortal. Mbio 4(5):9CrossRefGoogle Scholar
  367. Vilcinskas A (2013) Evolutionary plasticity of insect immunity. J Insect Physiol 59(2):123–129PubMedCrossRefGoogle Scholar
  368. Vilhena C, Bettencourt A (2012) Daptomycin: a review of properties, clinical use, drug delivery and resistance. Mini Rev Med Chem 12(3):202–209PubMedCrossRefGoogle Scholar
  369. Viti C et al (2014) Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38(4):633–659PubMedCrossRefGoogle Scholar
  370. von Koeckritz-Blickwede M et al (2012) Novel role of the antimicrobial peptide LL37 in the formation and stabilization of neutrophil extracellular traps. Faseb J 26Google Scholar
  371. Vuong C et al (2004a) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279(52):54881–54886PubMedCrossRefGoogle Scholar
  372. Vuong C et al (2004b) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6(3):269–275PubMedCrossRefGoogle Scholar
  373. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283(47):32637–32643PubMedCrossRefGoogle Scholar
  374. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937PubMedPubMedCentralCrossRefGoogle Scholar
  375. Wang G, Li X, Zasloff M (2010a) A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In: Wang G (ed) Antimicrobial peptides: discovery, design and novel therapeutic strategies, pp 1–21Google Scholar
  376. Wang G et al (2010b) Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 54(3):1343–1346PubMedPubMedCentralCrossRefGoogle Scholar
  377. Wang RZ et al (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Frontiers in Microbiology 6(13):144Google Scholar
  378. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70(2):462–478PubMedPubMedCentralCrossRefGoogle Scholar
  379. Wassenaar TM et al (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5(1):44–61CrossRefGoogle Scholar
  380. Weatherspoon-Griffin N et al (2014) The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 289(47):32571–32582PubMedPubMedCentralCrossRefGoogle Scholar
  381. Weidenmaier C, Kristian SA, Peschel A (2003) Bacterial resistance to antimicrobial host defenses–an emerging target for novel antiinfective strategies? Curr Drug Targets 4(8):643–649PubMedCrossRefGoogle Scholar
  382. Wick MJ (2011) Innate immune control of salmonella enterica serovar typhimurium: mechanisms contributing to combating systemic salmonella infection. J Innate Immun 3(6):543–549PubMedCrossRefGoogle Scholar
  383. Wilkens S (2015) Structure and mechanism of ABC transporters. F1000prime reports 7:14–14Google Scholar
  384. Wilmes M et al (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350–1358PubMedCrossRefGoogle Scholar
  385. Winter M, Lawrence C (2011) Asperger syndrome—What teachers need to Know, 2nd edn. Jessica Kingsley PublishersGoogle Scholar
  386. Wolf M, Moser B (2012) Antimicrobial activities of chemokines: not just a side-effect? Front Immunol 3:213PubMedPubMedCentralCrossRefGoogle Scholar
  387. Wong SSY, Yuen K-Y (2012) Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg Microbes Infect 1:e2PubMedPubMedCentralCrossRefGoogle Scholar
  388. Wong AR et al (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80(6):1420–1438PubMedCrossRefGoogle Scholar
  389. Wong K et al (2014) Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 39(1):8–16PubMedCrossRefGoogle Scholar
  390. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. Switzerland, GenevaGoogle Scholar
  391. Wu H et al (2015) Strategies for combating bacterial biofilm infections. J Oral Sci 7(1):1–7CrossRefGoogle Scholar
  392. Yamaguchi A, Nakashima R, Sakurai K (2015) Structural basis of RND-type multidrug exporters. Front Microbiol 6:327. doi: 10.3389/fmicb.2015.00327
  393. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38(3):151–159PubMedCrossRefGoogle Scholar
  394. Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44(44):257–283PubMedCrossRefGoogle Scholar
  395. Yang S-J et al (2012) The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 80(1):74–81PubMedPubMedCentralCrossRefGoogle Scholar
  396. Yang S-C et al (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241Google Scholar
  397. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55PubMedCrossRefGoogle Scholar
  398. Yeaman MR et al (1998) Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Investig 101(1):178–187PubMedPubMedCentralCrossRefGoogle Scholar
  399. Yin Y et al (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741–744PubMedPubMedCentralCrossRefGoogle Scholar
  400. Yother J (2011) Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 65(65):563–581PubMedCrossRefGoogle Scholar
  401. Yu EW et al (2013) Microbial efflux pumps: current research. Caister Academic PressGoogle Scholar
  402. Yu Z et al (2015) Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int 2015:11Google Scholar
  403. Zaffiri L, Gardner J, Toledo-Pereyra LH (2012) History of antibiotics. From salvarsan to cephalosporins. J Invest Surg 25(2):67–77PubMedCrossRefGoogle Scholar
  404. Zähner D et al (2010) Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 54(8):3516–3519PubMedPubMedCentralCrossRefGoogle Scholar
  405. Zamfir A et al (2003) Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin. Glycobiology 13(11):733–742PubMedCrossRefGoogle Scholar
  406. Zasloff M (1987) Magainins, a class of antimicrobial peptides from xenopus skin—isolation, characterization of 2 active forms, and partial cdna sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453PubMedPubMedCentralCrossRefGoogle Scholar
  407. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMedCrossRefGoogle Scholar
  408. Zgurskaya HI (2009) Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future microbiology 4:919–932PubMedPubMedCentralCrossRefGoogle Scholar
  409. Zgurskaya HI et al (2015) Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 6:100. doi: 10.3389/fmicb.2015.00100
  410. Zhang YK et al (2015) Multidrug Resistance Proteins (MRPs) and cancer therapy. AAPS J 17(4):802–812PubMedPubMedCentralCrossRefGoogle Scholar
  411. Zhou H et al (2014) Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol 64(2):413–420CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David A. Phoenix
    • 1
  • Sarah R. Dennison
    • 2
  • Frederick Harris
    • 3
  1. 1.Office of the Vice ChancellorLondon South Bank UniversityLondonUK
  2. 2.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  3. 3.School of Forensic and Investigative ScienceUniversity of Central LancashirePrestonUK

Personalised recommendations