Virtual Reality Assistant Technology for Learning Primary Geography

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9584)

Abstract

A virtual reality based enhanced technology for learning primary geography is proposed, which synthesizes several latest information technologies including virtual reality(VR), 3D geographical information system(GIS), 3D visualization and multimodal human-computer-interaction (HCI). The main functions of the proposed system are introduced, i.e. Buffer analysis, Overlay analysis, Space convex hull calculation, Space convex decomposition, 3D topology analysis and 3D space intersection detection. The multimodal technologies are employed in the system to enhance the immersive perception of the users.

Keywords

VRGIS Geography learning Virtual reality GIS 

Notes

Acknowledgments

The authors are thankful to the National Natural Science Fund for the Youth of China (41301439), LIESMARS Open Found(11I01) and Electricity 863 project(SS2015AA050201).

References

  1. 1.
    Bellotti, F., Berta, R., Gloria, A.D., Primavera, L.: Enhancing the educational value of video games. Comput. Entertainment (CIE) 7(2), 23 (2009)Google Scholar
  2. 2.
    Boytchev, P., Kanev, K., Nikolov, R.: Technology enhanced learning with subject field multiplicity support. In: Proceedings of the Joint International Conference on Human-Centered Computer Environments, pp. 39–44. ACM (2012)Google Scholar
  3. 3.
    Breunig, M., Zlatanova, S.: Review: 3d geo-database research: Retrospective and future directions. Comput. Geosci. 37(7), 791–803 (2011)CrossRefGoogle Scholar
  4. 4.
    Briggs, F.: Large data - great opportunities. Presented at IDF, Beijing (2012)Google Scholar
  5. 5.
    Brinkman, W.-P., van der Mast, C., Payne, A., Underwood, J.: Hci for tech-nology enhanced learning. In: Proceedings of the 22nd British HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction, vol. 2, pp. 185–186. British Computer Society (2008)Google Scholar
  6. 6.
    Carroll, J.M., Rosson, M.B.: A case library for teaching usability engineering: Design rationale, development, and classroom experience. J. Educ. Resour. Comput. (JERIC) 5(1), 3 (2005)Google Scholar
  7. 7.
    Che, L., Shahidehpour, M., Alabdulwahab, A., Al-Turki, Y.: Hierarchical coordination of a community microgrid with ac, dc microgrids. IEEE Trans. Smart Grid PP(99), 1 (2015)CrossRefGoogle Scholar
  8. 8.
    Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A.: Optimal interconnection planning of community microgrids with renewable energy sources. IEEE Trans. Smart Grid PP(99), 1 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, Y.-C.: A study of comparing the use of augmented reality and physical models in chemistry education. In: Proceedings of the ACM International Conference on Virtual Reality Continuum and its Applications, pp. 369–372. ACM (2006)Google Scholar
  10. 10.
    Chen, Z.-H., Chen, S.Y.: A surrogate competition approach to enhancing game-based learning. ACM Trans. Comput. Hum. Interact. (TOCHI) 20(6), 35 (2013)CrossRefGoogle Scholar
  11. 11.
    Dang, S., Ju, J., Matthews, D., Feng, X., Zuo, C.: Efficient solar power heating system based on lenticular condensation. In: International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), vol. 2, pp. 736–739. IEEE (2014)Google Scholar
  12. 12.
    Hansen, F.A., Kortbek, K.J., Grønbæk, K.: Mobile urban drama for multimedia-based out-of-school learning. In: Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia, p. 17. ACM (2010)Google Scholar
  13. 13.
    Holzinger, A., Kickmeier-Rust, M.D., Ebner, M.: Interactive technology for enhancing distributed learning: a study on weblogs. In: Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, pp. 309–312. British Computer Society (2009)Google Scholar
  14. 14.
    Huang, B., Jiang, B., Li, H.: An integration of gis, virtual reality and the internet for visualization, analysis and exploration of spatial data (2001)Google Scholar
  15. 15.
    Jiang, D., Xu, Z., Lv, Z.: A multicast delivery approach with minimum energy consumption for wireless multi-hop networks. Telecommun. Syst., 1–12 (2015)Google Scholar
  16. 16.
    Klamma, R., Spaniol, M., Jarke, M.: Knowledge multimedia processes in technology enhanced learning. In: Proceedings of the First ACM International Workshop on Multimedia Technologies for Distance Learning, pp. 77–86. ACM (2009)Google Scholar
  17. 17.
    Lahti, J., Siira, J., Törmänen, V.: Development and evaluation of media-enhanced learning application. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, p. 5. ACM (2012)Google Scholar
  18. 18.
    Li, T., Zhou, X., Brandstatter, K., Raicu, I.: Distributed key-value store on hpc and cloud systems. In: 2nd Greater Chicago Area System Research Workshop (GCASR). Citeseer (2013)Google Scholar
  19. 19.
    Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.: Zht: a light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787. IEEE (2013)Google Scholar
  20. 20.
    Li, X., Lv, Z., Hu, J., Zhang, B., Shi, L., Feng, S.: Xearth: a 3d gis platform for managing massive city information. In: IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 1–6. IEEE (2015)Google Scholar
  21. 21.
    Li, X., Lv, Z., Hu, J., Zhang, B., Yin, L., Zhong, C., Wang, W., Feng, S.: Traffic management and forecasting system based on 3d gis. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE (2015)Google Scholar
  22. 22.
    Li, X., Lv, Z., Wang, W., Zhang, B., Hu, J., Yin, L., Feng, S.: Webvrgis based traffic analysis and visualization system. Adv. Eng. Softw. 93, 1–8 (2016)CrossRefGoogle Scholar
  23. 23.
    Li, X., Lv, Z., Zhang, B., Wang, W., Feng, S., Hu, J.: Xearth: a 3d gis platform for city bigdata 3d visualization and analysis. In: IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). IEEE (2015)Google Scholar
  24. 24.
    Li, X., Lv, Z., Zheng, Z., Zhong, C., Hijazi, I.H., Cheng, S.: Assessment of lively street network based on geographic information system and space syntax. In: Multimedia Tools Applications, pp. 1–19 (2015)Google Scholar
  25. 25.
    Lu, Z., Rehman, S.U., Chen, G.: Webvrgis: webgis based interactive online 3d virtual community. In: International Conference on Virtual Reality and Visualization (ICVRV), pp. 94–99. IEEE (2013)Google Scholar
  26. 26.
    Lv, Z.: Wearable smartphone: wearable hybrid framework for hand and foot gesture interaction on smartphone. In: IEEE International Conference on Computer Vision Workshops, pp. 436–443. IEEE (2013)Google Scholar
  27. 27.
    Lv, Z., Chen, G., Zhong, C., Han, Y., Qi, Y.Y.: A framework for multi-dimensional webgis based interactive online virtual community. Adv. Sci. Lett. 7(1), 215–219 (2012)CrossRefGoogle Scholar
  28. 28.
    Lv, Z., Halawani, A., Feng, S., Li, H., Réhman, S.U.: Multimodal hand, foot gesture interaction for handheld devices. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 11(1s), 10 (2014)Google Scholar
  29. 29.
    Lv, Z., Li, X., Zhang, B., Wang, W., Feng, S., Hu, J.: Big city 3d visual analysis. In: 36th Annual Conference of the European Association for Computer Graphics (Eurographics). European Association for Computer Graphics (2015)Google Scholar
  30. 30.
    Lv, Z., Li, X., Zhang, B., Yin, L., Wang, W., Feng, S., Hu, J.: Traffic passenger flow forecasting on virtual reality gis system. In: IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). IEEE (2015)Google Scholar
  31. 31.
    Lv, Z., Réhman, S.U., Chen, G.: WebVRGIS: a P2P network engine for VR data and GIS analysis. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8226, pp. 503–510. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Lv, Z., Su, T.: 3d seabed modeling and visualization on ubiquitous context. In: SIGGRAPH Asia Posters, p. 33. ACM (2014)Google Scholar
  33. 33.
    Lv, Z., Tek, A., Da Silva, F., Empereur-Mot, C., Chavent, M., Baaden, M.: Game on, science-how video game technology may help biologists tackle visualization challenges. PloS one 8(3), 57990 (2013)CrossRefGoogle Scholar
  34. 34.
    Lv, Z., Yin, T., Han, Y., Chen, Y., Chen, G.: Webvr-web virtual reality engine based on p2p network. J. Netw. 6(7), 990–998 (2011)Google Scholar
  35. 35.
    Mayo, M.J.: Games for science and engineering education. Commun. ACM 50(7), 30–35 (2007)CrossRefGoogle Scholar
  36. 36.
    Minocha, S., Hardy, C.L.: Designing navigation and wayfinding in 3d virtual learning spaces. In: Proceedings of the 23rd Australian Computer-Human Interaction Conference, pp. 211–220. ACM (2011)Google Scholar
  37. 37.
    Mulwa, C., Lawless, S., Sharp, M., Arnedillo-Sanchez, I., Wade, V.: Adaptive educational hypermedia systems in technology enhanced learning: a literature review. In: Proceedings of the ACM Conference on Information Technology Education, pp. 73–84. ACM (2010)Google Scholar
  38. 38.
    Mustafa, B.: Visualizing the modern operating system: simulation experiments supporting enhanced learning. In: Proceedings of the Conference on Information Technology Education, pp. 209–214. ACM (2011)Google Scholar
  39. 39.
    Nagel, T., Duval, E., Vande Moere, A.: Interactive exploration of geospatial network visualization. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp. 557–572. ACM (2012)Google Scholar
  40. 40.
    Ng, K.: Interactive feedbacks with visualisation and sonification for technology-enhanced learning for music performance. In: Proceedings of the 26th Annual ACM International Conference on Design of Communication, pp. 281–282. ACM (2008)Google Scholar
  41. 41.
    Paneva-Marinova, D., Pavlova-Draganova, L., Draganov, L., Georgiev, V.: Ontological presentation of analysis method for technology-enhanced learning. In: Proceedings of the 13th International Conference on Computer Systems and Technologies, pp. 384–390. ACM (2012)Google Scholar
  42. 42.
    Pintus, R., Pal, K., Yang, Y., Weyrich, T., Gobbetti, E., Rushmeier, H.: A survey of geometric analysis in cultural heritage. Computer Graphics Forum (2015)Google Scholar
  43. 43.
    Porathe, T., Prison, J.: Design of human-map system interaction. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2008, pp. 2859–2864. ACM, New York (2008)Google Scholar
  44. 44.
    Rhyne, T.M., MacEachren, A.: Visualizing geospatial data. In: ACM SIGGRAPH Course Notes, p. 31. ACM (2004)Google Scholar
  45. 45.
    Scanlon, E., O’Shea, T., McAndrew, P.: Technology-enhanced learning: evidence-based improvement (2015)Google Scholar
  46. 46.
    Schmees, M.: Organizing technology enhanced learning. In: Proceedings of the 8th International Conference on Electronic commerce: The New e-commerce: Innovations for Conquering Current Barriers, Obstacles and Limitations to Conducting Successful Business on the Internet, pp. 139–150. ACM (2006)Google Scholar
  47. 47.
    Su, T., Lv, Z., Gao, S., Li, X., Lv, H.: 3d seabed: 3d modeling and visualization platform for the seabed. In: IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6. IEEE (2014)Google Scholar
  48. 48.
    Tomaszewski, B., Holden, E.: The geographic information science, technology, information technology bodies of knowledge: an ontological alignment. In: Proceedings of the 13th Annual Conference on Information Technology Education, pp. 195–200. ACM (2012)Google Scholar
  49. 49.
    Underwood, J.: Designing technology enhanced learning contexts. In: Proceedings of the 9th International Conference on Computer Supported Collaborative Learning, vol. 2, pp. 270–272. International Society of the Learning Sciences (2009)Google Scholar
  50. 50.
    Vatrapu, R.: Cultural considerations in learning analytics. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp. 127–133. ACM (2011)Google Scholar
  51. 51.
    Walczak, K., Wojciechowski, R., Cellary, W.: Dynamic interactive vr network services for education. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 277–286. ACM (2006)Google Scholar
  52. 52.
    Wang, J.J.-Y., Gao, X.: Partially labeled data tuple can optimize multivariate performance measures. In: 24th ACM International Conference on Information and Knowledge Management (CIKM) (2015)Google Scholar
  53. 53.
    Wang, J.J.-Y., Wang, Y., Jing, B.-Y., Gao, X.: Regularized maximum correntropy machine. Neurocomputing 160, 85–92 (2015)CrossRefGoogle Scholar
  54. 54.
    Wang, K., Kulkarni, A., Zhou, X., Lang, M., Raicu, I.: Using simulation to explore distributed key-value stores for exascale system services. In: 2nd Greater Chicago Area System Research Workshop (GCASR) (2013)Google Scholar
  55. 55.
    Wang, K., Liu, N., Sadooghi, I., Yang, X., Zhou, X., Lang, M., Sun, X.-H., Raicu, I.: Overcoming hadoop scaling limitations through distributed task executionGoogle Scholar
  56. 56.
    Wang, K., Zhou, X., Chen, H., Lang, M., Raicu, I.: Next generation job management systems for extreme-scale ensemble computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 111–114. ACM (2014)Google Scholar
  57. 57.
    Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and data-locality with data-aware scheduling. In: IEEE International Conference on Big Data (Big Data), pp. 119–128. IEEE (2014)Google Scholar
  58. 58.
    Wang, K., Zhou, X., Qiao, K., Lang, M., McClelland, B., Raicu, I.: Towards scalable distributed workload manager with monitoring-based weakly consistent resource stealing. In: Proceedings of the 24rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 219–222. ACM (2015)Google Scholar
  59. 59.
    Wang, W., Lv, Z., Li, X., Xu, W., Zhang, B., Zhang, X.: Virtual reality based GIS analysis platform. In: Arik, S., et al. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 638–645. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26535-3_73 CrossRefGoogle Scholar
  60. 60.
    Wang, Y., Bicer, T., Jiang, W., Agrawal, G.: Smart: a mapreduce-like framework for in-situ scientific analytics (2015)Google Scholar
  61. 61.
    Wang, Y., Su, Y., Agrawal, G.: A novel approach for approximate aggregations ver arrays. In: Proceedings of the 27th International Conference on Scientific and Statistical Database Management, p. 4. ACM (2015)Google Scholar
  62. 62.
    Yang, Y., Ivrissimtzis, I.: Mesh discriminative features for 3d steganalysis. ACM Trans. Multimedia Comput. Commun. Appl. 10(3), 1–27 (2014)CrossRefGoogle Scholar
  63. 63.
    Yannier, N., Koedinger, K.R., Hudson, S.E.: Learning from mixed-reality games: Is shaking a tablet as effective as physical observation? In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1045–1054. ACM (2015)Google Scholar
  64. 64.
    Zhang, S., Zhang, X., Ou, X.: After we knew it: empirical study and modeling of cost-effectiveness of exploiting prevalent known vulnerabilities across iaas cloud. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, pp. 317–328. ACM (2014)Google Scholar
  65. 65.
    Zhang, X., Han, Y., Hao, D.S., Lv, Z.: ARPPS: augmented reality pipeline prospect system. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 647–656. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26561-2_76 CrossRefGoogle Scholar
  66. 66.
    Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu, I.: Fusionfs: toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In: IEEE International Conference on Big Data (Big Data), pp. 61–70. IEEE (2014)Google Scholar
  67. 67.
    Zhou, X., Chen, H., Wang, K., Lang, M., Raicu, I.: Exploring distributed resource allocation techniques in the slurm job management system. Illinois Institute of Technology, Department of Computer Science, Technical Report (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of ScienceChengduChina
  2. 2.Shenzhen Research Center of Digital City EngineeringShenzhenChina
  3. 3.Key Laboratory of Urban Land Resources Monitoring and SimulationMinistry of Land and ResourcesShenzhenChina

Personalised recommendations